Artificial Neural Networks in Risk Management: A Bibliometric Study
Source: By:Breno Gontijo Tavares, Carlos Eduardo Sanches da Silva, Adler Diniz de Souza
DOI: https://doi.org/10.30564/jbar.v4i1.2678
Abstract:This study presents a bibliometric analysis of Artificial Neural Networks in Risk Management. The study considered articles from the I.S.I. Web of Knowledge and Scopus databases, Identification of publishers, countries, periodicals and the keywords most frequently cited. We used the CiteSpace® software to analyze this material, which provides a set of features to support bibliometrics, including the reference maps. This study provides data collection on Artificial Neural Networks applied to risk management. The number of works identified in this study is significant, and in the last ten years, the number of citations has increased. We did not identify the increase in paper count within the same period.
References:[1]Lucas H. S. Andrade, Cristiano M. Agulhari and Alessandro Goedtel. Controle pi-neural aplicado a um sistema de vazão. XII Simpósio Brasileiro de Automação Inteligente (SBAI), 2015. [2]C. A. Araujo. Bibliometria: evolução, história e questões atuais. Em Questão, Porto Alegre, 2006, 12(1):11-32. [3]Lutz Bornmann; Werner Marx; Hermann Schier, Erhard Rahm; Andreas Thor and Hans-Dieter Daniel. Convergent validity of bibliometric Google Scholar data in the field of chemistry - Citation counts for papers that were accepted by Angewandte Chemie International Edition or rejected but published elsewhere, using Google Scholar, Science Citation Index, Scopus, and Chemical Abstracts. Journal of Informetrics, 2009, 3(1): 27-35. [4]L. Bufrem, Y. Prates. O saber científico registrado e as práticas de mensuração da informação. Ciência da Informação, Brasília, 2005, 34(2): 9-25. [5]C. Chen. Searching for intellectual turning points: Progressive knowledge domain visualization. Proceedings of the National Academy of Sciences, 2004: 5303-5310. [6]M.J. Cobo, A.G. López-Herrera, E. Herrera-Viedma, F. Herrera. An approach for detecting, quantifying, and visualizing the evolution of a research field:A practical application to the fuzzy sets theory field. Journal of Informetrics, 2001, 5(1): 146-166. [7]Raphael José D’Castro, Cristine Martins Gomes Gusmão. Modelo de construção de uma ferramenta de avaliação de riscos utilizando Redes Neurais Artificiais. International Conference on Engineering and Technology Education, 2010: 07-10. [8]Jinghui Duan. Risk Identification and Evaluation of Customs Management Based on Fuzzy Neural Network Algorithm. Applied Mechanics and Materials, 2013, 291-294: 2924-2927, 2013. [9]Nadee Goonawardene, Shashikala Subashini, Nilupa Boralessa and Lalith Premaratne. A Neural Network Based Model for Project Risk and Talent Management. 7th International Symposium on Neural Networks, Shanghai, China, 2010: 532-539, 2010. [10]M.W.C. Gumpenberger, J. Gorraiz. Bibliometric practices and activities at the University of Vienna. Library Management, 2012, 33(3): 174-183, 2012. [11]Cristine Martins Gomes Gusmão. Um Modelo de Processo de Gestão de Riscos para Ambientes de Múltiplos Projetos de Desenvolvimento de Software. Tese de Doutorado, Universidade Federal de Pernambuco, Recife, Brasil, 2007. [12]Simon Haykin. Redes Neurais. Princípios e prática. Porto Alegre, RS: Bookman, 2002. [13] R.P. Higuera, D.P. Gluch, A.J. Dorofee, R.L. Murphy, J.A. Walker and R.C. Williams. An Introduction to Team Risk Management. Technical Report, Software Engineering Institute, Carnegie Melon University, U.S.A., 1994. [14] S-J. Huang, W-M. Han. Exploring the relationship between software project duration and risk exposure: A cluster analysis. Information & Management, 2008, 45(3): 175-182. [15] C. William Ibbs, Young Hoon Kwak. Assessing Project management maturity. Project Management Journal, 2000, 31(1): 32-43. [16] G. Liu, R. Jiang, Y. Jin. Sciatic nerve injury repair: A visualized analysis of research fronts and development trends. Neural Regeneration Research, 2014, 9: 1716-1722. [17] R. N. Machado. Análise cientométrica dos estudos bibliométricos publicados em periódicos da área de biblioteconomia e ciência da informação (1990- 2005). Perspectivas em ciência da informação, 2007, 12(3): 2-20. [18] Lokman I. Meho, Kiduk Yang. Impact of data sources on citation counts and rankings of L.I.S. faculty: I.S.I. Web of Knowledge versus scopus and google scholar. Journal of the American Society for Information Science and Technology, 2007, 58(13): 2105- 2125. [19] Sandra Miranda Neves, Carlos Eduardo Sanches Silva, Valéria Antonio Pamplona Salomon, Aneirson Francisco Silva, Bárbara Elizabeth Pereira Sotomonte. Risk management in software projects through Knowledge Management techniques: Cases in Brazilian Incubated Technology-Based Firms. International Journal of Project Management, 2014, 32(1): 125-138. [20] Y. Okubo. Bibliometric indicators and analysis of research systems: methods and examples. Paris: OECD, 1997. [21] A.R. Pearcel, R.A. Gregory, L. Williams. Range estimating for risk management using Artificial Neural Networks, 1996. [22] Olle Persson, Wolfgang Glanzel, Rickard Danell. Inflationary bibliometric values: The role of scientific collaboration and the need for relative indicators in evaluative studies. Scientometrics, 2004, 60(3): 421- 432. [23] PMI - Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK® Guide), 2013. [24] T. Raz, A.J. Shenhar. Dvir, D. Risk management, project success, and technological uncertainty. R & D Management, 2002, 32(2): 101-109. [25] Terry Lima Ruas, Luciana Pereira. Como construir indicadores de Ciência, Tecnologia e Inovação usando ISI Web of Knowledge, Derwent World Patent Index, Bibexcel e Pajek? Perspectivas em Ciência da Informação, 2014, 19(3): 52-81. [26] Saeed Samiee, Brian R. Chabowski. Knowledge structure in international marketing: a multi-method bibliometric analysis. Journal of the Academy of Marketing Science, 2012, 40(2): 364-386. [27] S.A. Sarcia, G. Cantone, V.R. Basili. A statistical neural network framework for risk management process - from the proposal to its preliminary validation for efficiency. In: ICSOFT (S.E.), INSTICC Press, 2007: 168-177. [28] S.E.I. Software Engineering Institute. CMMI - Capability Maturity Model Integration. Version 1.3, Pittsburgh, PA, Carnegie Mellon University, U.S.A., 2010. [29] Ivan Nunes Silva, Danilo Hernane Spatti and Rogério Andrade Flauzino. Redes Neurais Artificiais para Engenharia e Ciências Aplicadas. Artliber, USP, São Carlos, 2010. [30] J. Sun, M.H. Wang, Y.S. H.O. A historical review and bibliometric analysis of research on estatuary pollution. Marine Pollution Bulletin, 2012, 64(1): 13-21. [31] P.K. Suri, Kanchan Narula. Simulating the Probability of Risk During Project Completion. International Journal of Advanced Research in Computer Science and Software Engineering, 2013, 3(7): 704-709. [32] M. das G. Targino, J. C. R. Garcia. Ciência brasileira na base de dados do Institute for Scientific Information (ISI). Ciência da Informação, Brasília, jan/abr. 2000, 29(1): 103-117. [33] Thomson-Reuters. Journal Citation Reports. Disponível em: http://about.jcr.incites.thomsonreuters.com Acesso em: 12 Out. 2015. [34] Paula Vanessa Medeiros Vieira, Jacques Wainer. Correlações entre a contagem de citações de pesquisadores brasileiros, usando o ISI Web of Knowledge, Scopus e Scholar. Perspectivas em Ciência da Informação, 2013, 18(3): 45-60. [35] L. Wallace, M. Keil, A. R.A.I. How Software Project Risks Affect Project Performance: an Investigation of the Dimensions of Risk and an Exploratory Model. Decision Sciences, 2004, 35(2): 289-321. [36] C. R. Woszezenki, A. L. Gonçalvez. Mineração de textos biomédicos: uma revisão bibliométrica. Perspectivas em Ciência da Informação, 2013, 18(3): 24-44.