Trading Strategies for All Stock Programs
Source: By:lin867868 lin867868
DOI: https://doi.org/10.30564/jesr.v5i3.4962
Abstract:Market traders buy and sell volatile assets frequently, with a goal to maximize their total return. There is usually a commission for each purchase and sale. Two such assets are gold and bitcoin. In order to solve the existing issues of purchases between gold and bitcoin, given that we have 1,000 USD, what strategies should we take to maximize our profits? In this article, the authors established seven models to predict the value of gold and bitcoins and how you should buy them, as the trends of value fluctuate, our models must be accurate enough to avoid being influenced. Targeted at that, the content is divided into three parts. For part 1: The authors selected several indicators that feature how the stock runs. For instance, price of gold and profit of gold to build first two models, which are the risk of investment model and the judgment on bull-or-bear market model. Then we use these models to evaluate whether it is safe to invest. The models are as follows: bear-bull market judgment model, risk of investment evaluation model, prediction model, trade model. For part 2: Based on the data concerned, the authors established the time series model to predict the way the market fluctuates. Meanwhile, the result of this model can be applied in correcting the results of former two models so as to make it more accurate. For part 3: The authors combined models above to give the best trading strategy. In addition, we improved the models by adding more indicators to make it more precise. We hope that by applying our models and strategies, you can successfully maximize your profit.
References:[1] Novak, I., 2019. Efficient market hypothesis: case of the croatian capital market. Journal for the International and European Law, Economics and Market Integration. 2-5. [2] Boya, Ch., 2017. Testing capital market efficiency. Global Business and Economics Review. Tavel, P. 2007 Modeling and Simulation Design. AK Peters Ltd. 19(2). [3] Wu, X., Chen, H.L., Wang, J.J., et al., 2020. Adaptive stock trading strategies with deep reinforcement learning methods. Information Sciences. 538. [4] Tetiana, Z., Olesia, G., Maryna, B., et al., 2021. Methodological Tools for Investment Risk Assessment for the Companies of Real Economy Sector. Journal of Risk and Financial Management. 14(2), 3-7. [5] Bouri, E., Das, M., Gupta, R., et al., 2018. Spillovers between Bitcoin and other assets during bear and bull markets. Applied Economics. 50(55), 3-6. [6] Li, X.Y., Zakamulin, V., 2020. Stock volatility predictability in bull and bear markets. Quantitative Finance. 20(7), 2-4. [7] Yue, Sh., Hu, Y.Ch., Zavala, V.M., 2021. Mitigating Investment Risk Using Modular Technologies. Computers & Chemical Engineering.