Ferroelectric Properties of CuFe2O4, BaFe2O4, Ba0.2La0.8Fe2O4 Nanoparticles
Source: By:U.Naresh, R. Jeevan Kumar, N.V.S. Gupta, D.Kothandan
DOI: https://doi.org/10.30564/ese.v1i1.929
Abstract:In this article, we report ferroelectric properties of copper ferrite CuFe2O4 nanoparticles (CFN), Barium ferrite nanoparticles BaFe2O4 (BFN) and La substituted barium ferrite Ba0.2La0.8Fe2O4 (BLFN) nanoparticles synthesized via hydrothermal technique. The X-Ray diffraction for the synthesized particles reflects the cubic phase formation for CuFe2O4, orthorhombic phase structure for the BaFe2O4 and cubic formation of Ba0.2La0.8Fe2O4 (BLFN). The structural parameters such as crystallite size and micro-strain are computed from XRD and Williamson-Hall(W-H) analysis. The polarization- electric field (P-E) loop studies gave information about the ferroelectric nature of the synthesized samples. It was noticed that the CFN particle has a lossy dielectric nature whereas BFN, BLFN samples exhibit a multiferroic nature.
References:[1] K. Chandra Babu Naidu, W. Madhuri, Microwave processed bulk and nano NiMg ferrites: A comparative study on X-band electromagnetic interference shielding properties, Materials Chemistry and Physics, 2017, 187: 164-176. [2] K. Chandra Babu Naidu and W. Madhuri,Ceramic nanoparticle synthesis at lower temperatures for LTCC and MMIC technology, IEEE Transactions on Magnetics, 2018, 54. DOI:https://doi.org/10.1109/TMAG.2018.2855663 [3] Warren B. Cross, Louise Afeck, Maxim V. Kuznetsov,Ivan P. Parkin, Quentin A. Pankhurst Self-propagating high-temperature synthesis of ferrites MFe2O4 (M = Mg, Ba, Co, Ni, Cu, Zn); reactions in an external magnetic field, J. Mater. Chem., 1999, 9: 2545 -2552. [4] S. Vadivelan, N. Victor Jaya, Investigation of magnetic and structural properties of copper substituted barium ferrite powder particles via co-precipitation method, Results in Physics, 2016, 6: 843–850. [5] Muhammad Tahir Farid, Ishtiaq Ahmad, Muddassara Kanwal, Ghulam Murtaza, Irshad Ali, Muhammad Naeem Ashiq, Sajjad Ahmad Khan, Magnetic and electric behavior of praseodymium substituted CuPryFe2-yO4 ferrites, Journal of Magnetism and Magnetic Materials, 2017, 422: 337–343. [6] D. Kothandan, R. J. Kumar & K. C. B. Naidu, Barium titanate microspheres by the low-temperature hydrothermal method: studies on structural, morphological, and optical properties, Journal of Asian Ceramic Societies, 2018, 6: 1-6. [7] N. S. Kumar, R. P. Suvarna, K. C. B. Naidu, Grain, and grain boundary conduction mechanism in sol-gel synthesized and microwave heated PbLa0.8-yCoyTiO3 (y = 0.2-0.8) nanofibers, Materials Chemistry and Physics, 2019, 223: 241-248. [8] S.F. Mansour, M.A. Abdo, F.L. Kzar, Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nano ferrites, Journal of Magnetism and Magnetic Materials, 2018.DOI:https://doi.org/10.1016/j.jmmm.2018.05.104 [9] T. Ramaprasad, R. J. Kumar, U. Naresh, M. Prakash, D. Kothandan, K.C. B. Naidu, Effect of pH Value on Structural and Magnetic Properties of CuFe2O4 Nanoparticles Synthesized by Low-Temperature Hydrothermal Technique, Materials Research Express, 2018.DOI:https://doi.org/10.1088/2053-1591/aad860 [10] Qing Lin, Jinpei Lin, Xingxing Yang, Yun He, Liping Wang, and Jianghui Dong, The effects of Mg2+ and Ba2+ dopants on the microstructure and magnetic properties of doubly-doped LaFeO3 perovskite catalytic nano crystals, Ceramics International. DOI:https://doi.org/10.1016/j.ceramint.2018.10.246. [11] S.M. Mane, P.M. Tirmali, B. Ranjit, M. Khan, N. Khan, A.N. Tarale, S.B. Kulkarni, Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x) (Ba0.8Sr0. 2TiO3) - x (Co0.9Ni0.1Fe2O4) multiferroic composite, Solid State Sciences, 2018. DOI: https://doi.org/10.1016/j.solidstatesciences.2018.05.004 [12] Anjana V, Sara John, Pooja Prakash, Amritha M Nair, Aravind R Nair, Sreedha Sambhudevan and Balakrishnan Shankar, Magnetic Properties of Copper Doped Nickel Ferrite Nanoparticles Synthesized by Co-Precipitation Method, IOP Conf. Series: Materials Science and Engineering, 2018, 310: 012024. DOI: https://doi.org/10.1088/1757-899X/310/1/012024 [13] N. S. Kumar, R. P. Suvarna and K. C. B. Naidu, SolGel Synthesized and Microwave Heated Pb0.8-yLayCo0.2TiO3 (y= 0.2–0.8) Nanoparticles: Structural, Morphological and Dielectric Properties, Ceramics International, 2018, 44:18189-18199. [14] H. Ghayour & Majid Abdellahi & Mazyar Ghadiri Nejad & Amirsalar Khandan & Saeed Saber-Saman dari, Study of the effect of the Zn+2 content on the anisotropy and specific absorption rate of the cobalt ferrite: the application of Co1-xZnxFe2O4 ferrite for magnetic hyperthermia, J. Aust. Ceram. Soc. 2018, 54: 223-230. [15] U. Naresh, R. J. Kumar, K. C. B. Naidu, Optical, Magnetic and Ferroelectric Properties of Ba0. 2Cu0.8-xLaxFe2O4 (x = 0.2 - 0.6) Nanoparticles, Ceramics International, 2019, 45: 7515-7523. [16] S.F. Mansour, M.A. Abdo, F.L. Kzar, Effect of Cr dopant on the structural, magnetic and dielectric properties of Cu-Zn nano ferrites, Journal of Magnetism and Magnetic Materials, 2018. DOI: https://doi.org/10.1016/j.jmmm.2018.05.104 [17] Poonam Pahujaa, Chandra Prakash, R.P.Tandon “Comparative study of magnetoelectric composite system Ba0.95Sr0.05 TiO3 – Ni0.8Co0.2Fe2O4 with ferrite prepared by different methods”, CeramicsInternational, 2013. DOI:http://dx.doi.org/10.1016/j.ceramint.2013.11.012 [18] K. C. B. Naidu, V. N. Reddy, T. S. Sarmash, D. Kothandan, T. Subbarao, N. S. Kumar, Structural, morphological, electrical, impedance and ferroelectric properties of BaO-ZnO-TiO2 ternary system, JAust Ceram Soc., 2018. DOI:https://doi.org/10.1007/s41779-018-0225-0