Terahertz (THz) Generator and Detection
Source: By:Jitao Li, Jie Li
DOI: https://doi.org/10.30564/ese.v2i1.1777
Abstract:In the whole research process of electromagnetic wave, the research of terahertz wave belongs to a blank for a long time, which is the least known and least developed by far. But now, people are trying to make up the blank and develop terahertz better and better. The charm of terahertz wave originates from its multiple attributes, including electromagnetic field attribute,photon attribute and thermal attribute, which also attracts the attention of researchers in different fields and different countries, and also terahertz technology have been rated as one of the top ten technologies to change the future world by the United States. The multiple attributes of terahertz make it have broad application prospects in military and civil fields, such as medical imaging,astronomical observation, 6G communication, environmental monitoring and material analysis. It is no exaggeration to say that mastering terahertz technology means mastering the future. However, it is because of the multiple attributes of terahertz that the terahertz wave is difficult to be mastered. Although terahertz has been applied in some fields,controlling terahertz (such as generation and detection) is still an important issue. Nowadays, a variety of terahertz generation and detection technologies have been developed and continuously improved. In this paper, the main terahertz generation and detection technologies (including already practical and developing) are reviewed in terms of scientific and engineering principles,in order to provide a systematic and up-to-date reference for researchers in terahertz field.
References:[1] R A Lewis. A review of terahertz detectors. Journal of Physics D: Applied Physics, 2019, 52:433001.DOI: https://doi.org/10.1088/1361-6463/ab31d5 [2] A. Rogalski, F. Sizov. Terahertz detectors and focal plane arrays. Opto-Electronics Review, 2011,19: 46-404.DOI: https://doi.org/10.2478/s11772-011-0033-3 [3] Rong Zhao, Bin Zou, Guling Zhang, Dongqian Xu,Yuping Yang. High-sensitivity identification of aflatoxin B1 and B2 using terahertz time-domain spectroscopy and metamaterial-based terahertz biosensor.J Journal of Physics D: Applied Physics, 2020, 53:195401.DOI: https://doi.org/10.1088/1361-6463/ab6f90 [4] Fang Wang, Ling Jiang, Jun Song, Lin Huang, Yunwei Ju, Yunfei Liu. Sub-THz spectroscopic characterization identification for pine wood nematode ribosomal DNA. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 232: 118152.DOI: https://doi.org/10.1016/j.saa.2020.118152 [5] Liudmila Alyabyeva, Samvel Yegiyan, Victor Torgashev, Anatoly S. Prokhorov, Denis Vinnik,Svetlana Gudkova, Dmitry Zherebtsov, Martin Dressel, Boris Gorshunov. Terahertz-infrared spectroscopy of Ti4+-doped M-type barium hexaferrite. Journal of Alloys and Compounds, 2020, 820:153398.DOI: https://doi.org/10.1016/j.jallcom.2019.153398 [6] Peter M Solyankin, Irina A Nikolaeva, Andrey A Angeluts, Daniil E Shipilo, Nikita V Minaev,Nikolay A Panov, Alexei V Balakin, Yiming Zhu, Olga G Kosareva, Alexander P Shkurinov. THz generation from laser-induced breakdown in pressurized molecular gases: on the way to terahertz remote sensing of the atmospheres of Mars and Venus. New Journal of Physics, 2020, 22: 013039.DOI: https://doi.org/10.1088/1367-2630/ab60f3 [7] Gyeong-Ryul Kim, Kiwon Moon, Kyung Hyun Park,John F. O’Hara, D. Grischkowsky, Tae-In Jeon. Remote N2O gas sensing by enhanced 910-m propagation of THz pulses. Optics Express, 2019,27: 27514-27522.DOI: https://doi.org/10.1364/OE.27.027514 [8] Chensi Weng, Lei Liu, Taichang Gao, Shuai Hu,Shulei Li, Fangli Dou, Jian Shang. Multi-Channel Regression Inversion Method for Passive Remote Sensing of Ice Water Path in the Terahertz Band. Atmosphere, 2019, 10: 437.DOI: https://doi.org/10.3390/atmos10080437 [9] Yayun Cheng, Yingxin Wang, Yingying Niu, Ziran Zhao. Concealed object enhancement using multi-polarization information for passive millimeter and terahertz wave security screening. Optics Express,2020, 28: 6350-6366.DOI: https://doi.org/10.1364/OE.384029 [10] Liu Zhaoyang, Liu Liyuan, Wu Nanjian. Imaging system based on CMOS terahertz detector.Infrared and Laser engineering, 2017, 46: 0125001.DOI: https://doi.org/10.3788/IRLA201746.0125001 [11] Ryota Ito, Michinori Honma, Toshiaki Nose. Electrically Tunable Hydrogen-Bonded Liquid Crystal Phase Control Device. Applied Science, 2018, 8:2478.DOI: https://doi.org/10.3390/app8122478 [12] A. J. Fitzgerald, X. Tie, M. J. Hackmann, B. Cense, A.P. Gibson, and V. P. Wallace. Co-registered combined OCT and THz imaging to extract depth and refractive index of a tissue-equivalent test object. Biomedical Optics Express, 2020, 11: 1417-143.DOI: https://doi.org/10.1364/BOE.378506 [13] Minah Seo, Hyeong-Ryeol Park. Terahertz Biochemical Molecule-Specific Sensors. Advanced Optical Materials, 2019, 8: 1900662 DOI: https://doi.org/10.1002/adom.201900662 [14] Joo-Hiuk Son, Seung Jae Oh, Hwayeong Cheon.Potential clinical applications of terahertz Radiation.Journal of Applied Physics, 2019, 125: 190901.DOI: https://doi.org/10.1063/1.5080205 [15] A. I. Hernandez-Serrano, Daniel M. Mittleman,Emma Pickwell-MacPherson. Broadband amplitude,frequency, and polarization splitter for terahertz frequencies using parallel-plate waveguide technology.Optics Letters, 2020, 45: 1208-1211.DOI: https://doi.org/10.1364/OL.45.001208 [16] Daniel Headland, Masayuki Fujita , Tadao Nagatsuma. Bragg-Mirror Suppression for Enhanced Bandwidth in Terahertz Photonic Crystal Waveguides.IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26: 4900109.DOI: https://doi.org/10.1109/JSTQE.2019.2932025 [17] High-speed modulation of a terahertz quantum cascade laser by coherent acoustic phonon pulses.Nature Communications, 2020, 11: 835.DOI: https://doi.org/10.1038/s41467-020-14662-w [18] MehdiTaherkhani, Zahra Ghattan Kashani, Ramazan AliSadeghzadeh. On the performance of THz wireless LOS links through random turbulence channels.Nano Communication Networks, 2020, 23: 100282.DOI: https://doi.org/10.1016/j.nancom.2020.100282 [19] Liang Meiyan, Ren Zhuyun, Zhang Cunlin. Progress of Terahertz Space Exploration Technology.Laser & Optoelectronics Progress, 2019, 56: 1006-4125.DOI: https://doi.org/10.3788/LOP56.180004 [20] S. Lara-Avila, A. Danilov, D. Golubev, H. He, K.H. Kim, R. Yakimova, F. Lombardi, T. Bauch,S. Cherednichenko, S. Kubatkin. Towards quantum-limited coherent detection of terahertz waves in charge-neutral grapheme. Nature Astronomy, 2019, 3:983-988.DOI: https://doi.org/10.1038/s41550-019-0843-7 [21] Geoffrey C. Bower, Jason Dexter, Keiichi Asada,Christiaan D. Brinkerink, Heino Falcke, Paul Ho,Makoto Inoue, Sera Markoff, Daniel P. Marrone,Satoki Matsushita, Monika Moscibrodzka, Masanori Nakamura, Alison Peck, and Ramprasad Rao. ALMA Observations of the Terahertz Spectrum of Sagittarius A*. The Astrophysical Journal Letters, 2019, 881:L2.DOI: https://doi.org/10.3847/2041-8213/ab3397 [22] Hironori Matsumoto, Issei Watanabe, Akifumi Kasamatsu, Yasuaki Monnai. Integrated terahertz radar based on leaky-wave coherence tomography. Nature Electronics, 2020, 3: 122-129.DOI: https://doi.org/10.1038/s41928-019-0357-4 [23] Bin Tang, Qi Yang, Ye Zhang, Bin Deng, Hongqiang Wang. Three-Dimensional Micro-Motion Feature Extraction of the Vibrating Target Based on Multi-Channel Radar in the Terahertz Band.Sensors,2020, 20: 8.DOI: https://doi.org/10.3390/s20010008 [24] Krzysztof Iwaszczuk, Henning Heiselberg, Peter Uhd Jepsen. Terahertz radar cross section measurements.Optical Express, Optics Express, 2010, 18: 26399-26408.DOI: https://doi.org/10.1364/OE.18.026399 [25] Abhishek Singh, Alexej Pashkin, Stephan Winner,Malte Welsch, Cornelius Beckh, Philipp Sulzer,Alfred Leitenstorfer, Manfred Helm, Harald Schneide. Up to 70 THz bandwidth from an implanted Ge photoconductive antenna excited by a femtosecond Er:fibre laser. Light: Science & Applications, 2020, 9:30.DOI: https://doi.org/10.1038/s41377-020-0265-4 [26] G. Jemima Nissiyah, M. Ganesh Madhan. A Narrow Spectrum Terahertz Emitter Based on Graphene Photoconductive Antenna. Plasmonics, 2019, 14: 2003-2011.DOI:https://doi.org/10.1007/s11468-019-00998-7 [27] B. N. Carnio, P. G. Schunemann, K. T. Zawilski, and A. Y. Elezzabi. Generation of broadband terahertz pulses via optical rectification in a chalcopyrite CdSiP2 crystal. Optics Letter, 2017, 42:3920-3923.DOI: https://doi.org/10.1364/OL.42.003920 [28] J. Snyder, L. L. Ji, K. M. George, C. Willis, G. E.Cochran. Schumacher Relativistic laser driven electron accelerator using micro-channel plasma targets.Physics of Plasmas, 2019, 26: 033110.DOI:https://doi.org/10.1063/1.5087409 [29] Di Mitri S., Perucchi A., Adhlakha N. Coherent THz Emission Enhanced by Coherent Synchrotron Radiation Wakefield. Scientific Reports, 2018, 8: 11661.DOI:https://doi.org/10.1038/s41598-018-30125-1 [30] Maria Herminia Balgos, Rafael Jaculbia, Elizabeth Ann Prieto, Valynn Katrine Mag-usara,Masahiko Tani, Arnel Salvador, Elmer Estacio, Armando Somintac. Surface effect of n-GaAs cap on the THz emission in LT-GaAs. Journal of Materials Science:Materials in Electronics,2018, 29: 12436-12442. [31] Cyril Bernerd, Patricia Segonds, Jérôme Debray,Jean-François Roux, Emilie Hérault, Jean-Louis Coutaz, Ichiro Shoji, Hiroaki Minamide, Hiromasa Ito, Dominique Lupinski, Kevin Zawilski,Peter Schunemann, Xinyuan Zhang, Jiyang Wang,Zhanggui Hu, Benoît Boulanger. Evaluation of eight nonlinear crystals for phase-matched Terahertz second-order difference-frequency generation at room temperature. Optical Materials Express, 2020, 10:561-576.DOI: https://doi.org/10.1364/OME.383548 [32] Peng Wang, Xingyu Zhang, Zhenhua Cong, Zhaojun Liu, Xiaohan Chen, Zengguang Qin, Feilong Gao,Jinjin Xu, Zecheng Wang, Na Ming. Modeling of intracavity-pumped Q-switched terahertz parametric oscillators based on stimulated polariton scattering.Optics Express, 2020, 28: 6966-6980.DOI: https://doi.org/10.1364/OE.385493 [33] A Urbanowicz, R Adomavičius, A Krotkus, V L Malevich. Electron dynamics in Ge crystals studied by terahertz emission from photoexcited surfaces. Semiconductor Science and Technology,2005, 20: 1010-1015.DOI: https://doi.org/10.1088/0268-1242/20/10/005 [34] L Shi, SL Johnson, S Reiche, Compact and powerful THz source investigation on laser plasma wakefield injector and dielectric lined structure. Physical Review Accelerators and Beams, 2020, 23: 014701.DOI: https://doi.org/10.1103/PhysRevAccelBeams.23.014701 [35] J. Déchard, X. Davoine, L. Bergé. THz Generation from Relativistic Plasmas Driven by Near- to Far-Infrared Laser Pulses. Physical Review Letters, 2019,123: 264801.DOI:https://doi.org/10.1103/PhysRevLett.123.264801 [36] Kazuue Fujita, Shohei Hayashi, Akio Ito, Masahiro Hitaka, Tatsuo Dougakiuchi. Sub-terahertz and terahertz generation in long-wavelength quantum cascade lasers. Nanophotonics, 2019, 8:2235-2241.DOI: https://doi.org/10.1515/nanoph-2019-0238 [37] Linlin Hu, Rui Song, Guowu Ma, Yi Jiang, Wenqiang Lei, Fanbao Meng, Hongbin Chen Experimental Demonstration of a 0.34-THz Backward-Wave Oscillator With a Sinusoidally Corrugated Slow-Wave Structure. IEEE Transactions on Electron Devices,2018, 65: 2149-2155.DOI:https://doi.org/10.1109/TED.2018.2805699 [38] Alina C. Bunea, Dan Neculoiu, Antonis Stavrinidis,George Stavrinidis, Athanasios Kost.Monolithic Integrated Antenna and Schottky Diode Multiplier for Free Space Millimeter-Wave Power Generation.IEEE Microwave and Wireless Components Letters,2020, 30: 74 – 77.DOI:https://doi.org/10.1109/LMWC.2019.2954208 [39] Philipp Krauspe, Natalie Banerji, Julien Réhault.Effective detection of weak terahertz pulses in electro-optic sampling at kilohertz repetition rate. Journal of the Optical Society of America B, 2020, 37: 127-132.DOI: https://doi.org/10.1364/JOSAB.37.000127 [40] F. Joint, G. Gay, P.-B. Vigneron, T. Vacelet, S. Pirotta, R. Lefevre, Y. Jin, L. H. Li, A. G. Davies, E. H.Linfield, Y. Delorme, R. Colombelli. Compact and sensitive heterodyne receiver at 2.7 THz exploiting a quasi-optical HEB-QCL coupling scheme. Appllied Physics Letters, 2019, 115: 231104.DOI: https://doi.org/10.1063/1.5116351 [41] Jingle Liu, Xi-Cheng Zhang. Terahertz radiation enhanced emission of fluorescence. Frontiers of Optoelectronics, 2014, 7: 156-198.DOI: https://doi.org/10.1007/s12200-014-0396-4 [42] A. Rogalski, M. Kopytko, P. Martyniuk. Two-dimensional infrared and terahertz detectors:Outlook and status. Applied Physics Review, 2019, 6: 021316.DOI: https://doi.org/10.1063/1.5088578 [43] Jie Li, Jitao Li, Yue Yang, Jining Li, Yating Zhang,Liang Wu, Zhang Zhang, Maosheng Yang, Chenglong Zheng, Jiahui Li, Jin Huang, Fuyu Li, Tingting Tang, Haitao Dai, Jianquan Yao.Metal-graphene hybrid active chiral metasurfaces for dynamic terahertz wavefront modulation and near field imaging.Carbon, 2020, 163: 34-42.DOI: https://doi.org/10.1016/j.carbon.2020.03.019 [44] Ride Wang, Qiang Wu , Yaqing Zhang, Xitan Xu,Qi Zhang, Wenjuan Zhao, Bin Zhang, Wei Cai ,Jianghong Yao, Jingjun Xu. Enhanced on-chip terahertz sensing with hybrid metasurface/lithium niobate structures. Applied Physics Letters, 2019, 114:121102.DOI: https://doi.org/10.1063/1.5087609 [45] Mingyu Zhang, Dayan Ban, Chao Xu, John T. W.Yeow. Large-Area and Broadband Thermoelectric Infrared Detection in a Carbon Nanotube Black-Body Absorber. ACS Nano, 2019, 13, 13285-13292.DOI: https://doi.org/10.1021/acsnano.9b06332 [46] Weizhi Li, Jun Wang, Jun Gou, Zehua Huang,Yadong Jiang. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36: 42-48.DOI:https://doi.org/10.1007/s10762-014-0115-7 [47] J. Y. Jia, T. M. Wang, Y. H. Zhang, W. Z. Shen, H.Schneider. High-Temperature Photon-Noise-Limited Performance Terahertz Quantum-Well Photodetectors. IEEE Transactions on Terahertz Science and Technology, 2015, 5: 715-724.DOI: https://doi.org/10.1109/TTHZ.2015.2453632 [48] AlirezaMobini, M.Solaimani. A quantum rings based on multiple quantum wells for 1.2-2.8 THz detection.Physica E: Low-dimensional Systems and Nanostructures, 2018, 101: 162-166.DOI:https://doi.org/10.1016/j.physe.2018.04.012