Control and Treatment of Bone Cancer: A Novel Theoretical Study
Source: By:Author(s)
DOI: https://doi.org/10.30564/jeis.v5i2.6004
Abstract:The human body has symmetric bones. This paper uses control engineering concepts to design a suitable controller to synchronize two symmetric bones of the human body to control and treat bone cancer. A Nonsingular Terminal Sliding Mode Control (NTSMC) method will be employed to design the proposed control inputs. The control inputs can be the chemical drugs that can be used to treat bone cancer. The dynamical equations of bone cancer will be used to apply the designed control method and test it. For testing the designed controller, Simulink/MATLAB software will be used. The proposed controller is chattering-free, robust against uncertainties and external disturbances, and finite-time stable in the control engineering view. Bone cancer will be treated for almost one year using the proposed control method.
References:[1] Jerez, S., Camacho, A., 2018. Bone metastasis modeling based on the interactions between the BMU and tumor cells. Journal of Computational and Applied Mathematics. 330, 866-876. DOI: https://doi.org/10.1016/j.cam.2016.12.026 [2] Buenzli, P.R., Pivonka, P., Gardiner, B.S., et al., 2012. Modelling the anabolic response of bone using a cell population model. Journal of Theoretical Biology. 307, 42-52. DOI: https://doi.org/10.1016/j.jtbi.2012.04.019 [3] Han, Y., Kang, Y., 2022. Bone niche and bone metastases. Bone sarcomas and bone metastases-from bench to bedside. Academic Press: Cambridge. pp. 107-119. [4] Ottaviani, G., Jaffe, N., 2010. The epidemiology of osteosarcoma. Pediatric and adolescent osteosarcoma. Springer: Berlin. pp. 3-13. [5] Pivonka, P., Zimak, J., Smith, D.W., et al., 2008. Model structure and control of bone remodeling: A theoretical study. Bone. 43(2), 249-263. DOI: https://doi.org/10.1016/j.bone.2008.03.025 [6] Chen-Charpentier, B.M., Diakite, I., 2016. A mathematical model of bone remodeling with delays. Journal of Computational and Applied Mathematics. 291, 76-84. DOI: https://doi.org/10.1016/j.cam.2014.11.025 [7] Abadi, A.S.S., Hosseinabadi, P.A., Mekhilef, S., et al., 2020. Chattering‐free fixed‐time sliding mode control for bilateral teleoperation under unknown time-varying delay via disturbance and state observers. Advanced Control for Applications: Engineering and Industrial Systems. 2(4), e52. DOI: https://doi.org/10.1002/adc2.52 [8] D’Amico, A.A., Colavolpe, G., Foggi, T., et al., 2022. Timing synchronization and channel estimation in free-space optical OOK communication systems. IEEE Transactions on Communications. 70(3), 1901-1912. DOI: https://doi.org/10.1109/TCOMM.2022.3142134 [9] Mohadeszadeh, M., Pariz, N., 2022. An application of adaptive synchronization of uncertain chaotic system in secure communication systems. International Journal of Modelling and Simulation. 42(1), 143-152. DOI: https://doi.org/10.1080/02286203.2020.1848281 [10] Chantawat, C., Botmart, T., 2022. Finite-time H∞ synchronization control for coronary artery chaos system with input and state time-varying delays. Plos One. 17(4), e0266706. DOI: https://doi.org/10.1371/journal.pone.0266706 [11] Izadbakhsh, A., Gholizade‐Narm, H., Deylami, A., 2022. Observer‐based adaptive controller design for chaos synchronization using Bernstein-type operators. International Journal of Robust and Nonlinear Control. 32(7), 4318-4335. DOI: https://doi.org/10.1002/rnc.6026 [12] Khan, A., Khan, T., Chaudhary, H., 2022. Chaos controllability in chemical reactor system via active controlled hybrid projective synchronization method. AIP Conference Proceedings. 2435(1). DOI: https://doi.org/10.1063/5.0084689 [13] Vaidyanathan, S., 2015. Adaptive synchronization of novel 3-D chemical chaotic reactor systems. Parameters. 1, 4. [14] Feng, Y., Yu, X., Han, F., 2013. On nonsingular terminal sliding-mode control of nonlinear systems. Automatica. 49(6), 1715-1722. DOI: https://doi.org/10.1016/j.automatica.2013.01.051 [15] Feng, Y., Yu, X., Man, Z., 2002. Non-singular terminal sliding mode control of rigid manipulators. Automatica. 38(12), 2159-2167. DOI: https://doi.org/10.1016/S0005-1098(02)00147-4 [16] Soltani Sharif Abadi, A., Ordys, A., Kukielka, K., et al., 2023. Review on challenges for robotic eye surgery; surgical systems, technologies, cost-effectiveness, and controllers. The International Journal of Medical Robotics and Computer Assisted Surgery. e2524. DOI: https://doi.org/10.1002/rcs.2524 [17] Cruz-Ortiz, D., Chairez, I., Poznyak, A., 2022. Non-singular terminal sliding-mode control for a manipulator robot using a barrier Lyapunov function. ISA Transactions. 121, 268-283. DOI: https://doi.org/10.1016/j.isatra.2021.04.001 [18] Alattas, K.A., Vu, M.T., Mofid, O., et al., 2022. Adaptive nonsingular terminal sliding mode control for performance improvement of perturbed nonlinear systems. Mathematics. 10(7), 1064. DOI: https://doi.org/10.3390/math10071064 [19] Wang, S., Li, S., Su, J., et al., 2023. Extended state observer-based nonsingular terminal sliding mode controller for a DC-DC buck converter with disturbances: Theoretical analysis and experimental verification. International Journal of Control. 96(7), 1661-1671. DOI: https://doi.org/10.1080/00207179.2022.2063192 [20] Alattas, K.A., Mofid, O., Alanazi, A.K., et al., 2022. Barrier function adaptive nonsingular terminal sliding mode control approach for quad-rotor unmanned aerial vehicles. Sensors. 22(3), 909. DOI: https://doi.org/10.3390/s22030909 [21] Guo, L., Liu, W., Li, L., et al., 2022. Neural network non-singular terminal sliding mode control for target tracking of underactuated underwater robots with prescribed performance. Journal of Marine Science and Engineering. 10(2), 252. DOI: https://doi.org/10.3390/jmse10020252 [22] Islam, Y., Ahmad, I., Zubair, M., et al., 2022. Adaptive terminal and supertwisting sliding mode controllers for acute Leukemia therapy. Biomedical Signal Processing and Control. 71, 103121. DOI: https://doi.org/10.1016/j.bspc.2021.103121 [23] Khalili, P., Vatankhah, R., Taghvaei, S., 2018. Optimal sliding mode control of drug delivery in cancerous tumour chemotherapy considering the obesity effects. IET Systems Biology. 12(4), 185-189. DOI: https://doi.org/10.1049/iet-syb.2017.0094 [24] Sarhaddi, M., Yaghoobi, M., 2020. A new approach in cancer treatment regimen using adaptive fuzzy back-stepping sliding mode control and tumor-immunity fractional order model. Biocybernetics and Biomedical Engineering. 40(4), 1654-1665. DOI: https://doi.org/10.1016/j.bbe.2020.09.003 [25] Dey, B.S., Bera, M.K., & Roy, B.K. (editors), 2018. Super twisting sliding mode control of cancer chemotherapy. 2018 15th International Workshop on Variable Structure Systems (VSS); 2018 Jul 9-11; Graz, Austria. New York: IEEE. p. 343-348. DOI: https://doi.org/10.1109/VSS.2018.8460228 [26] Shahri, A.P., Haghighatnia, S., Moghaddam, R.K., et al., 2017. Control the tumour growth via sliding mode control. International Journal of Medical Engineering and Informatics. 9(2), 101-109. DOI: https://doi.org/10.1504/IJMEI.2017.083093 [27] Doruk, R.Ö., 2020. Angiogenic inhibition therapy, a sliding mode control adventure. Computer Methods and Programs in Biomedicine. 190, 105358. DOI: https://doi.org/10.1016/j.cmpb.2020.105358 [28] Alyoussef, F., Kaya, I., 2023. Improved adaptive dynamic non-singular terminal sliding mode controller with fractional disturbance observer. Information Sciences. 641, 119110. DOI: https://doi.org/10.1016/j.ins.2023.119110 [29] Alyoussef, F., Kaya, I., 2023. A new dynamic sliding mode controller with disturbance observer for controlling integrating processes with time delay. International Journal of Control. 1-21. DOI: https://doi.org/10.1080/00207179.2023.2201649 [30] Cai, G., Ding, Y., Chen, Q., 2019. SMC Chaos control of a novel hyperchaotic finance system using a new chatter free sliding mode control. Journal of Physics: Conference Series. 1187(3), 032103. DOI: https://doi.org/10.1088/1742-6596/1187/3/032103 [31] Adamiak, K., 2020. Chattering-free reference sliding variable-based SMC. Mathematical Problems in Engineering. 3454090. DOI: https://doi.org/10.1155/2020/3454090 [32] Abadi, A.S.S., 2023. A novel control system for synchronizing chaotic systems in the presence of communication channel time delay; case study of Genesio-Tesi and Coullet systems. Nonlinear Analysis: Hybrid Systems. 50, 101408. DOI: https://doi.org/10.1016/j.nahs.2023.101408 [33] Abadi, A.S.S., Ordys, A., Pierscionek, B. (editors), 2023. Controlling a teleoperated robotic eye surgical system under a communication channel’s unknown time delay. 2023 27th International Conference on Methods and Models in Automation and Robotics (MMAR); 2023 Aug 22-25; Międzyzdroje, Poland. New York: IEEE. p. 211-215. DOI: https://doi.org/10.1109/MMAR58394.2023.10242556 [34] Alinaghi Hosseinabadi, P., Soltani Sharif Abadi, A., Mekhilef, S., et al., 2020. Chattering-free trajectory tracking robust predefined-time sliding mode control for a remotely operated vehicle. Journal of Control, Automation and Electrical Systems. 31(5), 1177-1195. DOI: https://doi.org/10.1007/s40313-020-00599-4 [35] Abadi, A.S.S., Ordys, A., Pierscionek, B., 2023. Novel off-line self-tuning controller with guaranteed stability. International Journal of Automotive Technology. 24(3), 851-862. DOI: https://doi.org/10.1007/s12239-023-0069-7 [36] Abadi, A.S.S., Hosseinabadi, P.A., Mekhilef, S., 2018. Two novel approaches of NTSMC and ANTSMC synchronization for smart grid chaotic systems. Technology and Economics of Smart Grids and Sustainable Energy. 3, 1-14. DOI: https://doi.org/10.1007/s40866-018-0050-0 [37] Abadi, A.S.S., Hosseinabadi, P.A., Mekhilef, S., 2020. Fuzzy adaptive fixed-time sliding mode control with state observer for a class of high-order mismatched uncertain systems. International Journal of Control, Automation and Systems. 18, 2492-2508. DOI: https://doi.org/10.1007/s12555-019-0650-z [38] Komarova, S.V., Smith, R.J., Dixon, S.J., et al., 2003. Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone. 33(2), 206-215. DOI: https://doi.org/10.1016/S8756-3282(03)00157-1 [39] Feng, Y., Han, F., Yu, X., 2014. Chattering free full-order sliding-mode control. Automatica. 50(4), 1310-1314. DOI: https://doi.org/10.1016/j.automatica.2014.01.004