A Study on the Effects of Internal Heat Generation on the Thermal Performance of Solid and Porous Fins using Differential Transformation Method
Source: By:Gbeminiyi Musibau Sobamowo
DOI: https://doi.org/10.30564/ssid.v2i1.1888
Abstract:[1] S. Kiwan, A. Al-Nimr. Using Porous Fins for Heat Transfer Enhancement. ASME J. Heat Transfer, 2001, 123: 790-5. [2] S. Kiwan. Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci., 2007a, 46: 1046-1055. [3] S. Kiwan. Thermal analysis of natural convection porous fins. Tran. Porous Media, 2007b, 67: 17-29. [4] S. Kiwan, O. Zeitoun. Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow, 2008, 18(5): 618-634. [5] R. S. Gorla, A. Y. Bakier. Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 2011, 38: 638-645. [6] B. Kundu, D. Bhanji. An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrigeration, 2011, 34: 337-352. [7] B. Kundu, D. Bhanja, K. S. Lee. A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer, 2012, 55(25-26): 7611-7622. [8] A. Taklifi, C. Aghanajafi, H. Akrami. The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med., 2010, 85: 215-31. [9] D. Bhanja, B. Kundu. Thermal analysis of a constructal T-shaped porous fin with radiation effects.Int J Refrigerat, 2011, 34: 1483-96. [10] B. Kundu. Performance and optimization analysis of SRC profile fins subject to simultaneous heat and mass transfer. Int. J. Heat Mass Transfer, 2007, 50: 1545-1558. [11] S. Saedodin, S. Sadeghi, S. Temperature distribution in long porous fins in natural convection condition. Middle-east J. Sci. Res., 2013, 13(6): 812-817. [12] S. Saedodin, M. Olank, 2011. Temperature Distribution in Porous Fins in Natural Convection Condition, Journal of American Science, 2011, 7(6): 476-481. [13] M. T. Darvishi, R. Gorla, R.S., Khani, F., Aziz, A.-E. Thermal performance of a porus radial fin with natural convection and radiative heat losses. Thermal Science, 2015, 19(2): 669-678. [14] M. Hatami, D. D. Ganji. Thermal performance of circular convective-radiative porous fins with different section shapes and materials.Energy Conversion and Management, 2013, 76: 185-193. [15] M. Hatami , D. D. Ganji. Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4). International of J. Ceramics International, 2014, 40: 6765-6775. [16] M. Hatami, A. Hasanpour, D. D. Ganji, Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation.Energ.Convers. Manage, 2013, 74: 9-16. [17] M. Hatami , D. D. Ganji. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis.International Journal of Refrigeration, 2014, 40: 140-151. [18] M. Hatami, G. H. R. M. Ahangar, D. D. Ganji, K. Boubaker. Refrigeration efficiency analysis for fully wet semi-spherical porous fins.Energy Conversion and Management, 2014, 84: 533-540. [19] R. Gorla, R.S., Darvishi, M. T. Khani, F. Effects of variable Thermal conductivity on natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 2013, 38: 638-645. [20] A. Moradi,.,T. Hayat, A. Alsaedi. Convective-radiative thermal analysis of triangular fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management 2014, 77: 70-77. [21] S. Saedodin. M. Shahbabaei. Thermal Analysis of Natural Convection in Porous Fins with Homotopy Perturbation Method (HPM).Arab J SciEng. 2013, 38: 2227-2231. [22] H. Ha, Ganji D. D., Abbasi M. Determination of Temperature Distribution for Porous Fin with Temperature-Dependent Heat Generation by Homotopy Analysis Method. J ApplMech Eng., 2005, 4(1). [23] H. A. Hoshyar, I. Rahimipetroudi, D. D. Ganji, A. R. Majidian. Thermal performance of porous fins with temperature-dependent heat generation via Homotopy perturbation method and collocation method. Journal of Applied Mathematics and Computational Mechanics, 2015, 14(4): 53-65. [24] Y. Rostamiyan,, D. D. Ganji , I. R. Petroudi, M. K. Nejad. Analytical Investigation of Nonlinear Model Arising in Heat Transfer Through the Porous Fin. Thermal Science, 2014, 18(2): 409-417. [25] S. E. Ghasemi, P. Valipour, M. Hatami, D. D. Ganji. Heat transfer study on solid and porous convective fins with temperature-dependent heat -generation using efficient analytical method J. Cent.South Univ., 2014, 21: 4592-4598. [26] I. R. Petroudi, D. D. Ganji, A. B. Shotorban, M. K. Nejad, E. Rahimi, R. Rohollahtabar and F. Taherinia. Semi-Analytical Method for Solving Nonlinear Equation Arising in Natural Convection Porous fin. Thermal Science, 2012, 16(5): 1303-1308. [27] M.G. Sobamowo, O.M. Kamiyo, O.A. Adeleye. Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress, 2017, 1: 39-52. [28] M.G. Sobamowo. Singular perturbation and differential transform methods to two-dimensional flow of nanofluid in a porous channel with expanding/contracting walls subjected to a uniform transverse magnetic field Thermal Science and Engineering Progress, 2017, 4: 71-84.