Bearing Capacity of Defective Reinforced Concrete Pile in Sand-model Study
Source: By:A. M. Nasr, W. R. Azzam, K. E. Ebeed
DOI: https://doi.org/10.30564/agger.v4i3.4808
Abstract:Concrete piles that were poorly constructed or analyzed in their soil analyses may have structural or geotechnical defects. To examine such defects, an experimental study was conducted to investigate how a defective reinforced concrete pile behaved. These piles were installed and subjected to a compression axial load in the sand that had relative densities of 30%,60%, and 80%. The tests were performed using four concrete model piles: one intact pile and the other three piles had a structural defect (necking) at three different positions of the pile at (0.25 L from the top, center, and 0.25 L bottom). Geotechnical defect (soft layer or debris) was studied using Styrofoam layer at various vertical distances under the pile toe with Y/D = (0, 0.5, 1 and 1.5) D. The test results showed that the bearing capacity of the structural defect was the most in the case of a neck at 0.25 L from the bottom, followed by a neck at the center, and finally a neck at 0.25 L from the top. In the case of a geotechnical defect, the bearing capacity of the pile decreased with the decrease of the vertical distance between the soft layer and the pile toe.
References:[1] Poulos, H.G., 2005. Pile behavior—Consequences of geological and construction imperfections. Journal of Geotechnical and Geoenvironmental Engineering. 131(5), 538-563. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(538) [2] Poulos, H.G., 1999. Behaviour of pile groups with defective piles. International Conference on Soil Mechanics and Foundation Engineering. pp. 871-876. [3] Klingmüller, O., Kirsch, F., 2004. A Quality and Safety Issue for Cast-in-Place Piles-25 Years of Experience with Low-Strain Integrity Testing in Germany: From Scientific Peculiarity to Day-to-Day Practice. Current Practices and Future Trends in Deep Foundations. pp. 202-221. DOI: https://doi.org/10.1061/40743(142)12 [4] Sakr, M., 2000. “Load Transfer Characteristics of Model Defective Piles in Clay” 8ASEC. pp. 1037-1051. [5] Al-Mosawe, M., Al-Shakarchi, Y., 2021. Behavior of Defective Cast in Place Piles. Journal of Engineering. 27(4). DOI: https://doi.org/10.31026/j.eng.2021.04.08 [6] Eslami, A., Fellenius, B.H., 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal. 34(6), 886- 904. DOI: https://doi.org/10.1139/t97-056 [7] Elsawwaf, M.A.E., Azzam, W.R., Kassem, E.M., 2021. An Experimental Study of the Behavior of a Strip Footing Adjacent to Reinforced Sand Slope Above a Soft Pocket. GEOMATE Journal. 21(87), 118-127. DOI: https://doi.org/10.21660/2021.87.j2369 [8] Xu, M., Ni, P., Ding, X., et al., 2019. Physical and numerical modelling of axially loaded bored piles with debris at the pile tip. Computers and Geotechnics. 114, 103146. DOI: https://doi.org/10.1016/j.compgeo.2019.103146 [9] Azzam, W.R., Al Mesmary, M., 2010. The behavior of single tension pile subjected to surcharge loading. Ned University Journal of Research. 7(1), 1-12. [10] ECP (Egyptian Code of Practice), 2007. Egyptian code for design and construction of reinforced concrete structures. ECP 203-2007, Housing and Building Research Centre, Cairo. [11] American Concrete Institute, 2000. Design, Manufacture, and Installation of Concrete Piles (ACI 543R-00), American Concrete Institute, Michigan, USA. [12] Rao, S., Nasr, A., 2010. Behavior of vertical piles embedded in reinforced sand under pullout oblique loads. International Journal of Geotechnical Engineering. 4(2), 217-230. DOI: https://doi.org/10.3328/IJGE.2010.04.02.217-230 [13] IS 2911 Part 1/Sec 1, 2010. Indian standard design and construction of pile foundations-code of practice: concrete piles. [14] Terzaghi, K., Peck, R.B., Mesri, G., 1996. Soil mechanics in engineering practice. John Wiley & Sons. [15] Meyerhof, G.G., 1976. Bearing capacity and settlement of pile foundations. Journal of the Geotechnical Engineering Division. 102(3), 197-228. DOI: https://doi.org/10.1061/AJGEB6.0000243 [16] Krishnamurthy, P., Hariswaran, S., 2017. Numerical Studies on the Load Carrying Capacity of Defective Pile. Indian Geotechnical Conference. [17] Sarvesh, E.A., Hariswaran, S., Premalatha, K. Influence of presence of defective pile in the load carrying capacity of pile group. Indian Geotechnical Conference.