Correlation of Ground Penetrating Radar Data with Geotechnical Prospect Profiles: Reduto Case Study, Belém-PA, Brazil
Source: By:Danusa Mayara de Souza, Lyvio Luiz Clávio de Alcântara Júnior
DOI: https://doi.org/10.30564/agger.v5i2.5579
Abstract:The study presented in this manuscript aimed to relate the sedimentary strata imaged by the ground penetrating radar (GPR) method through numerical modeling with the mapping of sedimentary strata acquired through geotechnical surveys. The study aimed to expose how obtaining subsoil information through noninvasive/destructive electromagnetic waves is beneficial, as they are reliable and less costly than drilling holes beyond what is necessary to have a subsurface mapping. In this sense, physical-geological modeling was carried out. The information on the type of sediments, acquired through simple recognition surveys carried out in the city of Belém-PA, helped to create a model of a sedimentary package with its respective intrinsic physical properties. The result shows that the GPR recovered with good vertical and horizontal resolution at the beginning and end of the layers of the sedimentary package studied, proving to be very effective for locating geotechnical sounding points and safely reducing costs.
References:[1] Mello, F., 2007. A Verticalização em Belém do Pará: Um Estudo das Transformações Urban as e Arquitetônicas em Edifícios Residenciais Multifamiliares (Portuguese) [Verticalization in Belém of Pará: A study of urban and architec tural transformations in multifamily residential buildings] [Master’s thesis]. Brazil: Universi dade Federal do Rio de Janeiro. [2] Carvalho, L.M.D., 2019. Fundações superfi ciais: controle de concepção e execução para evitar manifestações patológicas nas edificações (Portuguese) [Surface foundations: Design and execution control to avoid pathological manifes tations in buildings][Bachelor’s thesis]. Brazil: Universidade Federal Rural do Semi-Árido. [3] Rahnema, H., Mirassi, S., Dal Moro, G., 2021. Cavity effect on Rayleigh wave dispersion and P-wave refraction. Earthquake Engineering and Engineering Vibration. 20, 79-88. [4] Mirassi, S., Rahnema, H., 2020. Deep cavity detection using propagation of seismic waves in homogenous half-space and layered soil media. Asian Journal of Civil Engineering. 21(8), 1431-1441. [5] Rahnema, H., Mirasi, S., 2012. Seismic and geotechnical study of land subsidence and vulnerability of rural buildings. International Journal of Geosciences. 3(04), 878. [6] Bahia, V., Luiz, J.G., Fenzl, N., et al., 2009. A subsuperfície rasa na área do Parque Ambiental de Belém: Estudo a partir de dados geofísicos e de poços (Portuguese) [The shallow subsurface in the Parque Ambiental de Belém area: Study based on geophysical and well data]. Brazil: Contribuições À Geologia da Amazônia. 1ed Belém-PA. 6, 183-192. [7] do Nascimento, C.T.C. (editor), 2011. Determi nação da estrutura vertical de latossolos usando sondagens elétricas verticais (Portuguese) [Determination of the vertical structure of latosols using vertical electrical soundings]. 12th International Congress of the Brazilian Geophysical Society; 2011 Aug; the Netherlands: European Association of Geoscientists & Engineers. p.264. [8] ABNT NBR 8036, 1983. Programação de sond agens de simples reconhecimento dos solos para fundações de edifícios (Portuguese) [Programming of simple soil recognition probes for building foundations]. Brazil: Brazilian Association of Technical Standards. [9] Marcelli, M., 2007. Sinistros na Construção Civil—Causas e soluções para danos e prejuízosem obras (Portuguese) [Claims in civil construction—Causes and solutions for damages and losses in works]. PINI: Brazil. pp. 270. [10]Sena, G., Nascimento, M., Nabut Neto, A., 2020. Patologia das Construções (Portuguese) [Construction pathology]. Ekoa Educação: Brazil. [11] Guizzi, F.T., Leucci, G., 2018. Global research patterns on ground penetrating radar (GPR). Surveys in Geophysics. 39, 1039-1068. [12]Moradi, M., Rahnema, H., Mirassi, S., 2022. Detecting the depth and thickness of weak layer in soil media using phase velocity spectrum and theoretical dispersion curve of Rayleigh wave. Iranian Journal of Geophysics. 16(3), 57-77. [13]Rahnema, H., Mirassi, S., 2014. Crisis man-agement concerning underground water falling and land subsidence occurrence in the plains of Iran. Advances in Environmental Biology. 1453-1466. [14]ABNT NBR 6122, 2019. Projeto e execução de fundações (Portuguese) [Design and execution of foundations]. Brazil: Brazilian Association of Technical Standards. Available from: https://docente.ifrn.edu.br/valtencirgomes/disciplinas/construcao-de-edificios/nbr-06122-1996-projeto-e-execucao-de-fundacoes [15]ABNT NBR 6484, 2020. Solo—Sondagem de simples reconhecimento com PT—Método de ensaio (Portuguese) [Soil—Single reconnais sance sounding with SPT—Test method]. Brazil: Brazilian Association of Technical Standards. Available from: https://engenhariacivilfsp.files.wordpress.com/2014/11/spt-metodo_de_ensaio_nbr_6484.pdf [16]ABNT NBR 6502, 1995. Solos e Rochas (Portuguese) [Soils and rocks]. Brazil: Brazilian Association of Technical Standards. Available from: https://engenhariacivilfsp.files.wordpress.com/2015/02/abnt_nbr_06502_-_1995_-_rochas_e_solos_-_terminologia.pdf [17]Wanderley, G.S.M., 2017. Desenvolvimento de Aplicativo para Relatório de Sondagem SPT na Plataforma Android (Portuguese) [Application development for SPT survey report on the an droid platform] [Bachelor’s thesis]. Brazil: Universidade Federal da Paraíba. [18] Salame, A.M., 2003. Mapeamento das Fundações mais usadas na Cidade de Belém—PA (Portuguese) [Mapping of the most used Foundations in the City of Belém—PA] [Master’s thesis]. Brazil: Universidade Federal do Pará. [19] Vieira, M., Alves, C., Ferreira, V., et al., 2021. Modelagem de propriedades geológico-geotécni cas em solos de Belém do Pará (Portuguese) [Modeling of geological-geotechnical properties in soils of Belém do Pará]. Research, Society and Development. 10(2), 1-15. [20]Utsi, E.C., 2017. Ground penetrating radar: Theory and practice. Elsevier: Oxford. pp. 224. [21]Daniels, D., 2004. Ground penetrating radar. The Institution of Engineering and Technology: London. pp. 752. [22]Jol, H., 2009. Ground penetrating radar: Theory and applications. Elsevier: Amsterdam. pp. 544. [23]Ida, N., 2015. Engineering electromagnetics. Springer: New York. pp. 1062. [24]Sandmeier, K.J., 2016. ReflexW Version 8.1. program for processing of seismic, acoustic or electromagnetic reflection, refraction and transmission data. Software Manual, Karlsruhe, Germany. p. 628. [25]Ryazantsev, P.A., Hartemink, A.E., Bakhmet, O.N., 2022. Delineation and description of soil horizons using ground-penetrating radar for soils under boreal forest in Central Karelia (Russia). CATENA. 214, 106285. [26]Sestras, P., Bilașco, Ș., Roșca, S., et al., 2022. Multi-instrumental approach to slope failure monitoring in a landslide susceptible newly built-up area: Topo-Geodetic survey, UAV 3D modelling and ground-penetrating radar. Remote Sensing. 14(22), 5822. [27]Carrive, P., Saintenoy, A., Léger, E., et al., 2022. Exploiting ground-penetrating radar signal enhancements by water-saturated bulb surrounding defective waterpipes for leak detection. Geosciences. 12(10), 368. [28]Elshaboury, N., Mohammed Abdelkader, E., Al Sakkaf, A., et al., 2023. A critical review and bibliometric analysis on applications of ground penetrating radar in science based on web of science database. Engineering. 4(1), 984-1008.