Some Results of Direct FR Technology Applied to Study Methane Seepage Areas in the Arctic Region
Source: By:Mykola Yakymchuk, Ignat Korchagin, Valery Soloviev
DOI: https://doi.org/10.30564/agger.v5i3.5792
Abstract:The experimental study of the seepage processes' sources formation in structures of the Arctic Region was carried out using modified methods of frequency-resonance (FR) processing and decoding of satellite images and photographs with the vertical scanning of the cross-sections. The newly obtained results show that the intensity and dynamics of the methane seeps and pockmarks fields’ formation depend on active deep degassing processes in the continental margin structures. The use of direct FR-sounding technologies allows for determining the probable origin and depth of geological sources of gas migration at marginal migration centers in Greenland, and Norwegian and Barents Seas. New results confirm the crust-mantle gas fluids’ influence on the nature and degassing processes features in the scan points of polar marginal structures. These data are important arguments in favor of the “volcanic model” of various structural elements formation in this and other regions. The FR technologies data also showed a possibility of seeps use as shallow and deep hydrocarbon field indicators in gas emission areas. These independent data can be used in compiling models of the deep lithosphere structure and possible mechanisms of abiogenetic hydrocarbon formation in Arctic margin structures. The authors suppose that hydrocarbons through deep channels migrate (from 57 km deep) to the upper crustal horizons where their fields can form. During this migration, gas seeps and pockmarks are formed on the sea bottom and part of the gas can migrate into the atmosphere. Data show that basaltic volcanoes in Greenland scan points can be the real channels through which hydrogen migrates to the upper crustal horizons and further into the atmosphere. Active gas migration in Arctic seepage areas can be an important factor in the global climate change processes.
References:[1] Shestopalov, V.M., Lukin, A.E., Zgonik, V.A., et al., 2018. БАДАТА-Интек сервис (Russian) [Essays on Earth’s degassing]. BADATA-Intek Service: Kyiv. pp. 632. [2] Yakymchuk, M., Korchagin, I., Levashov, S., et al., 2022. Вулканізм і процеси дегазації вструктурах полярних регіонів Землі (оглядза результатами частотно-резонансних досліджень) (Ukrainian) [Volcanism and degassing processes in the structures of the Earth’s Polar Regions (review based on the results of frequency-resonance studies)]. Dodo Books Indian Ocean Ltd. and OmniScriptum S.R.L Publishing group: London. pp. 276. Available from: https://morebooks.de/shop-ui/shop/search?q=978-620-0-63606-5&page=1 [3] Bogoyavlensky, V.I., Sizov, O.S., Nikonov, R.A., et al., 2020. Earth degassing in the Arctic: The genesis of natural and anthropogenic methane emissions. Arctica: Ecology and Economy. 39, 6-22. DOI: https://doi.org/10.25283/2223-4594-2020-3-6-22 [4] WMO Greenhouse Gas Bulletin (GHG Bulletin): The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021 [Internet]. Available from: http://www.indiaenvironmentportal.org.in/content/473810/greenhouse-gas-bulletin-ghg-bulletin-the-stateof-greenhouse-gases-in-the-atmosphere-basedon-global-observations-through-2021/ [5] Yakymchuk, N.A., Korchagin, I.N., Bakhmutov, V.G., et al., 2019. Геофизические исследова-ния в Украинской морской антарктической экспедиции 2018 г: мобильная измерительная аппаратура, инновационные прямопоисковые методы, новые результаты (Russian) [Geophysical investigation in the Ukrainian marine Antarctic expedition of 2018: mobile measuring equipment, innovative direct- prospecting methods, new results]. Геоинформатика. 1, 5-27. [6] Якимчук Н.А., Корчагин И.Н., 2019-2021. Технология частотно-резонансной обработки данных ДЗЗ: результаты практической апробации при поисках полезных ископаемыхв различных регионах земного шара (Russian) [Technology of frequency-resonance processing of remote sensing data: Results of practical approbation during mineral searching in various regions of the globe]. Геоинформатика. Часть I. 3(71), 29-51; Часть II. 4, 30-58; Часть III. 1, 19-41; Часть IV. 3, 29-62; Часть V. 3-4, 51-88. [7] Levashov, S.P., Yakymchuk, N.A., Korchagin, I.N., 2012. Частотно-резонансный принцип, мобильная геоэлектрическая технология: новаяпарадигма геофизических исследований (Russian) [Frequency-resonance principle, mobile geoelectric technology: New paradigm of geophysical investigations]. Геофизический журнал. 34(4), 166-176. [8] Yakymchuk, M., Korchagin, I. (editors), 2023. About the opportunity of direct-prospecting methods application for detection areas of gas and natural hydrogen migration to the surface and in the atmosphere. Proceedings of the 2nd International Scientific Conference; 2023 May 4-5; Dublin, Ireland. p. 220-251. DOI: https://doi.org/10.5281/zenodo.7905551 [9] Nielsen, T., Laier, T., Kuijpers, A., et al., 2014. Fluid flow and methane occurrences in the Disko Bugt area offshore West Greenland: Indications for gas hydrates? Geo-Marine Letters. 34, 511-523. DOI: https://doi.org/10.1007/s00367-014-0382-2 [10]Hogan, K.A., Dowdeswell, J.A., Cofaigh, C.Ó., 2012. Glacimarine sedimentary processes and depositional environments in an embayment fed by West Greenland ice streams. Marine Geology. 311, 1-16. [11] Schumann, K., Völker, D., Weinrebe, W.R., 2012. Acoustic mapping of the Ilulissat Ice Fjord mouth, west Greenland. Quaternary Science Reviews. 40, 78-88. [12]Christiansen, F.G., Bojesen-Koefoed, J.A., Dam, G., et al., 2020. A review of oil and gas seepage in the Nuussuaq Basin, West Greenland-implications for petroleum exploration. GEUS Bulletin. 44, 4567. DOI: https://doi.org/10.34194/geusb.v44.4567 [13]Yakymchuk, C., Kirkland, C.L., Cavosie, A.J., et al., 2021. Stirred not shaken; critical evaluation of a proposed Archean meteorite impact in West Greenland. Earth and Planetary Science Letters. 557, 116730. DOI: https://doi.org/10.1016/j.epsl.2020.116730 [14]Mohammedyasin, S.M., Lippard, S.J., Omosanya, K.O., et al., 2016. Deep-seated faults and hydrocarbon leakage in the Snøhvit Gas Field, Hammerfest Basin, southwestern Barents Sea. Marine and Petroleum Geology. 77, 160-178. DOI:https://doi.org/10.1016/j.marpetgeo.2016.06.011 [15]Murillo, W.A., Vieth-Hillebrand, A., Horsfield, B., et al., 2016. Petroleum source, maturity, alteration and mixing in the southwestern Barents Sea: New insights from geochemical and isotope data. Marine and Petroleum Geology. 70, 119-143. DOI: https://doi.org/10.1016/j.marpetgeo.2015.11.009 [16]Tasianas, A., Martens, I., Bünz, S., et al., 2016. Mechanisms initiating fluid migration at Snøhvit and Albatross fields, Barents Sea. Arktos. 2, 1-18. DOI: https://doi.org/10.1007/s41063-016-0026-z [17]Ostanin, I., Anka, Z., Di Primio, R., 2017. Role of faults in hydrocarbon leakage in the Hammerfest Basin, SW Barents Sea: Insights from seismic data and numerical modelling. Geosciences. 7(2), 28. DOI: https://doi.org/10.3390/geosciences7020028 [18]Shilov, V.V., Druzhinina, N.I., Vasilenko, L.V., et al., 1999. Stratigraphy of sediments from the Haakon Mosby Mud Volcano area. Geo-Marine Letters. 19(1-2), 48-56. [19]Andreassen, K., Hubbard, A., Winsborrow, M., et al., 2017. Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor. Science. 356(6341), 948-953. [20]Serov, P., Mattingsdal, R., Winsborrow, M., et al., 2023. Widespread natural methane and oil leakage from sub-marine Arctic reservoirs. Nature Communications. 14(1), 1782. DOI: https://doi.org/10.1038/s41467-023-37514-9 [21]Vogt, P.R., Gardner, J., Crane, K., 1999. The Norwegian-Barents-Svalbard (NBS) continental margin: Introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane. Geo-Marine Letters. 19, 2-21. [22]Lutz, R., Klitzke, P., Weniger, P., et al., 2021. Basin and petroleum systems modelling in the northern Norwegian Barents Sea. Marine and Petroleum Geology. 130, 105128. [23]Solheim, A., Elverhøi, A., 1985. A pockmark field in the Central Barents Sea; gas from a petrogenic source? Polar Research. 3(1), 11-19. [24]Wallmann, K., Riedel, M., Hong, W.L., et al., 2018. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming. Nature Communications. 9(1), 83. [25]Sarkar, S., Berndt, C., Minshull, T.A., et al., 2012. Seismic evidence for shallow gas-escape features associated with a retreating gas hydrate zone offshore west Svalbard. Journal of Geophysical Research: Solid Earth. 117(B9). [26]Veloso, M., Greinert, J., Mienert, J., et al., 2015. A new methodology for quantifying bubble flow rates in deep water using splitbeam echosounders: Examples from the Arctic offshore NW-Svalbard. Limnology and Oceanography Method. 13, 267-287. [27]Westbrook, G.K., Thatcher, K.E., Rohling, E.J., et al., 2009. Escape of methane gas from the seabed along the West Spitsbergen continental margin. Geophysical Research Letters. 36(15), L15608. DOI: https://doi.org/10.1029/2009GL039191 [28]Roy, S., Hovland, M., Noormets, R., et al., 2015. Seepage in Isfjorden and its tributary fjords, West Spitsbergen. Marine Geology. 363, 146-159. DOI: http://dx.doi.org/10.1016/j.margeo.2015.02.003 [29]Betlem, P., Roy, S., Birchall, T., et al., 2021. Modelling of the gas hydrate potential in Svalbard’s fjords. Journal of Natural Gas Science and Engineering. 94, 104127. DOI: https://doi.org/10.1016/j.jngse.2021.104127 [30]Forwick, M., Baeten, N.J., Vorren, T.O., 2009. Pockmarks in Spitsbergen fjords. Norwegian Journal of Geology. 89, 65-77. [31]Roy, S., Senger, K., Hovland, M., et al., 2019. Geological controls on shallow gas distribution and seafloor seepage in an Arctic fjord of Spitsbergen, Norway. Marine and Petroleum Geology. 107, 237-254. DOI: http://dx.doi.org/10.1016/j.marpetgeo.2019.05.021