Climate Induced Virus Generated Communicable Diseases: Management Issues and Failures
Source: By:Author(s)
DOI: https://doi.org/10.30564/jasr.v4i2.3229
Abstract:In the present review article human diseases caused by various groups of pathogens have been explained with its etiology, epidemiology and treatment. In addition, effect of climatic changes on parasites and pathogens has been demarcated with rising incidences of diseases. In response to environmental changes, mainly external and internal microenvironment of body and drug regimens taken by patients; virus is regularly changing its form and new mutant variants are coming out. These are circulating in many Indian states and cross border countries and causing high infectivity and mortality in human patients. These variants with new mutations are challenging existing drugs and other prophylactic measures and massively disrupting functions of a tissue, organ, or entire organism. Diseases caused by viruses are showing new trends in virulence, with high infectivity, morbidity and mortality. Due to climatic effect and drug resistance and new mutations in pathogens disease burden has been exacerbated enormously at global level. In all cases of helminthes, protozoan’s, fungi, bacteria, virus pathogens and parasites available drug structure seem to be failed or their usefulness has been much reduced due to evolution of new mutant variants with multiple drug resistance. There are serious failures at the level of operation, management and control of disease. The utmost failure is due to lack of appropriate vaccine, drug regimens, clinical care and awareness among people. These are major reasons that is why diseases become uncontrolled and unmanageable.
References:[1] Mackenzie, J.S.,. Poidinger, M, Lindsay M.D., Hal R.A l, L.M. Sammels, Molecular epidemiology and evolution of mosquito-borne flaviviruses and alphaviruses enzootic in Australia. Virus genes, 1994, 11(2-3): 225-37. [2] Centers for Disease Control and Prevention (CDC). Use of Japanese encephalitis vaccine in children: recommendations of the advisory on immunization practices, MMWR Morb Mortal Wkly Rep. 2013, 62(45):.898-900. [3] Chakrabarty S, Sacena VK, Bhardwaj Mohan. Epidemiological investigation of Japanese Encephalitis - accessed 23 April 2013. [4] Caraballo H, King K. Emergency department management of mosquito-borne illness: malaria, dengue, and West Nile virus. Emerg Med Pract. 2014,16(5):1- 23; quiz 23-4. [5] Rathi A.K., Kushwaha K.P., Singh Y.D., Singh J., Sirohi R., Singh R.K., Singh U.K., JE virus encephalitis: 1988 epidemic at Gorakhpur, . Indian Pediatr. 1993, 30 (3):325-333. [6] Dash A.P., Bhatia R., Sunyoto T., Mourya D.T. Emerging and re-emerging arboviral diseases in Southeast Asia. J Vector Borne Dis, 2013. 50 (2):77- 84. [7] Pujhari S.K, Prabhakar S, Ratho R.K., Modi M, Sharma M., Mishra B., A novel mutation (S227T) in domain II of the envelope gene of Japanese encephalitis virus circulating in North India. Epidemiol Infect; 2011, 139:849-56. [8] Inoue YK., An attenuated mutant of Japanese Encephalitis Virus, Bull World Health Organ. 1964;30(2):181-5. [9] Eastman PS, Blair CD. Temperature-sensitive mutants of Japanese encephalitis virus. J Virol. 1985, 55(3):611-6. DOI: https://doi.org/10.1128/JVI.55.3.611-616.1985 [10] Glasner DR, Puerta-Guardo H, Beatty PR, Harris E. The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol. 2018;5(1):227-253. DOI: https://doi.org/10.1146/annurev-virology-101416-041848 [11] Wilken L, Rimmelzwaan GF. Adaptive Immunity to Dengue Virus: Slippery Slope or Solid Ground for Rational Vaccine Design?. Pathogens. 2020;9(6):470. DOI: https://doi.org/10.3390/pathogens9060470 [12] Silveira G.F., Strottmann DM, de Borba L, et al. Single point mutations in the helicase domain of the NS3 protein enhance dengue virus replicative capacity in human monocyte-derived dendritic cells and circumvent the type I interferon response. Clin Exp Immunol. 2016;183(1):114-128. DOI: https://doi.org/10.1111/cei.12701 [13] Ahmad Z., Poh CL. The Conserved Molecular Determinants of Virulence in Dengue Virus. Int J Med Sci. 2019;16(3):355-365. DOI: https://doi.org/10.7150/ijms.29938 [14] Buti M, Rodriguez-Frias F, Jardi R, Esteban R (December). Hepatitis B virus genome variability and disease progression: the impact of pre-core mutants and HBV genotypes. Journal of Clinical Virology, 2005, 34 (1): S79-82. DOI: https://doi.org/10.1016/s1386-6532(05)80015-0 [15] Tacke F, Gehrke C, Luedde T, Heim A, Manns MP, Trautwein C (August 2004). Basal core promoter and precore mutations in the hepatitis B virus genome enhance replication efficacy of Lamivudine-resistant mutants. Journal of Virology, 78 (16): 8524-35. [16] Cleveland Clinic CME hepatitis B Retrieved 15 March 2013. [17] Lin CL, Kao JH. The clinical implications of hepatitis B virus genotype: Recent advances. Journal of Gastroenterology and Hepatology, 2011, 26 (1): 123-30. DOI: https://doi.org/10.1111/j.1440-1746.2010.06541.x [18] Tsugawa T., Tatsumi M., Tsutsumi H., Virulence-associated genome mutations of murine rotavirus identified by alternating serial passages in mice and cell cultures. J Virol. 2014;88(10):5543-5558. DOI: https://doi.org/10.1128/JVI.00041-14 [19] Lustig Y., Hindiyeh M., Orshan L., Weiss L., Koren R., Katz-Likvornik S., et al. Fifteen years of mosquito surveillance reveals high genetic diversity of West Nile virus in Israel. J Infect Dis. 2016;213:1107 -14. DOI: https://doi.org/10.1093/infdis/jiv556 [20] Lustig Y., Lanciotti R.S., Hindiyeh M., et al. Mutation in West Nile Virus Structural Protein prM during Human Infection. Emerg Infect Dis. 2016; 22(9):1647-1649. DOI: https://doi.org/10.3201/eid2209.160132 [21] Anis E., Grotto I., Mendelson E., Bin H., Orshan L., Gandacu D., et al. West Nile fever in Israel: the reemergence of an endemic disease. J Infect. 2014;68:170-5. DOI: https://doi.org/10.1016/j.jinf.2013.10.009 [22] Chancey C., Grinev A., Volkova E., Rios M., The global ecology and epidemiology of West Nile virus. Biomed Res Int. 2015; 2015:376230. DOI: https://doi.org/10.1155/2015/376230 [23] Chao Shan, Hongjie Xia, Sherry., Haller., SashaR., Azar, Yang Liu., Jianying Liu., Antonio E. Muruato, Rubing Chen, ShannanL. Rossi, Maki Wakamiya, Nikos Vasilakis, Rongjuan Pei, Camila R. Fontes-Garfias, Sanjay Kumar Singh, Xuping Xie, Scott C. Weaver, Pei-Yong Shi Proceedings of the National Academy of Sciences, 2020, 117 (33): 20190-20197; DOI: https://doi.org/10.1073/pnas.2005722117 [24] Luo J, Zhang B, Wu Y, Guo X. Amino Acid Mutation in Position 349 of Glycoprotein Affect the Pathogenicity of Rabies Virus. Front Microbiol. 2020;11:481. DOI: https://doi.org/10.3389/fmicb.2020.00481 [25] Moore, S.M., Hanlon C.A.Rabies-specific antibodies: measuring sur-rogates of protection against a fatal disease.PLoS Negl Trop Dis 2010;4:e595. [26] Coulon P., Ternaux J.P., Flamand A., Tuffereau C. An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J Virol. 1998; 72(1):273-278. DOI: https://doi.org/10.1128/JVI.72.1.273-278.1998 [27] Wenbo Wang., Jian Ma., Jianhui Nie., Jia Li., Shouchun Cao., Lan Wang., Chuanfei Yu., Weijin Huang., Yuhua Li., Yongxin Yu., Mifang Liang., Brett Zirkle., Xiaojiang S. Chen., Xuguang Li., Wei Kong & Youchun Wang (2019) Antigenic variations of recent street rabies virus, Emerging Microbes & Infections, 8:1, 1584-1592. DOI: https://doi.org/10.1080/22221751.2019.1683436 [28] Lokugamage N, Freiberg AN, Morrill JC, Ikegami T. Genetic subpopulations of Rift Valley fever virus strains ZH548 and MP-12 and recombinant MP-12 strains. J Virol. 2012;86(24):13566-13575. DOI: https://doi.org/10.1128/JVI.02081-12 [29] Yang D, Hwang D, Qiu Z, Gillam S. Effects of mutations in the rubella virus E1 glycoprotein on E1- E2 interaction and membrane fusion activity. J Virol. 1998 Nov;72(11):8747-55. DOI: https://doi.org/10.1128/JVI.72.11.8747-8755.1998. PMID: 9765418; PMCID: PMC110290. [30] Kakizawa J, Nitta Y, Yamashita T, Ushijima H, Katow S. Mutations of rubella virus vaccine TO-336 strain occurred in the attenuation process of wild progenitor virus. Vaccine. 2001, 19(20-22):2793-802. DOI: https://doi.org/10.1016/s0264-410x(01)00018-4 [31] Tambo, Ernest; El-Dessouky, Ashraf (27 September 2018). Defeating re-emerging Alkhurma hemorrhagic fever virus outbreak in Saudi Arabia and worldwide. PLoS Negl Trop Dis, 2018, 12 (9): e0006707. DOI: https://doi.org/10.1371/journal.pntd.0006707 [32] Lindenbach, B. D.; et al. Flaviviridae: The Viruses and Their Replication”. In Knipe, D. M.; P. M. Howley (eds.). Fields Virology (5th ed.). Philadelphia, PA: Lippincott Williams & Wilkins. 2007, pp.1101. [33] Staples J.E., Monath., T.P. Yellow fever: 100 years of discovery. JAMA: The Journal of the American Medical Association. 2008; 300 (8): 960 -2. [34] Silva, Patricia A. G. C. An RNA Pseudoknot Is Required for Production of Yellow Fever Virus Subgenomic RNA by the Host Nuclease XRN1. Journal of Virology. 2010, 84 (21): 11395 -11406. DOI: https://doi.org/10.1128/jvi.01047-10 [35] Ebola virus disease, Fact sheet N°103, Updated September 2014”. World Health Organization (WHO). September 2014. [36] Modrow, Susanne; Falke, Dietrich; Truyen, Uwe; Schätzl, Hermann Modrow, Susanne; Falke, Dietrich; Truyen, Uwe; Schätzl, Hermann (eds.), Viruses: Definition, Structure, Classification, Molecular Virology, Berlin, Heidelberg: Springer, 2013:17 -30, doi: https://doi.org/10.1007/978-3-642-20718-1_2#sec00021 [37] Preliminary study finds that Ebola virus fragments can persist in the semen of some survivors for at least nine months. Centers for Disease Control and Prevention (CDC). 14 October 2015. Archived from the original on 24 August 2017. [38] Gary Wong., Shihua He., Anders Leung., Wenguang Cao., Yuhai Bi., Zirui Zhang., Wenjun Zhu. , et al., Naturally Occurring Single Mutations in Ebola Virus Observably Impact Infectivity Journal of Virology Dec 2018, 93 (1) e01098-18; DOI: https://doi.org/10.1128/JVI.01098-18 [39] Sam I.C., AbuBakar S., Chikungunya virus infection. Med J Malaysia. 2006;61(2):264-9. [40] Vogt M., Dulbecco R, Wenner HA. Mutants of poliomyelitis viruses with reduced efficiency of plating in acid medium and reduced neuropathogenicity. Virology. 1957 Aug;4(1):141-55. DOI: https://doi.org/10.1016/0042-6822(57)90050-8 [41] Maryse Tardy-Pantit, Brunu Blondel, Annette Martin, Fred J Tekala, Florian Horaud and Francis Depleyrouxi, A Mutation in the RNA Polymerase of Poliovirus Type 1 Contributes to Attenuation in Mice, Journal of Virology, 1993, pp. 4630-4638. [42] Puri M., Ken Lemon, W. Paul Duprex, Bertus K. Rima, Curt M. Horvath. A Point Mutation, E95D, in the Mumps Virus V Protein Disengages STAT3 Targeting from STAT1 Targeting, Journal of Virology, 2009, 83 (13): 6347-6356. DOI: https://doi.org/10.1128/JVI.00596-09 [43] Archer, R H. et al., Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture. Journal of virology, 2000 74,18: 8390-401. DOI: https://doi.org/10.1128/jvi.74.18.8390-8401.2000 [44] Allen T.M., Altfeld M., Crippling HIV one mutation at a time. J Exp Med. 2008;205(5):1003-1007. DOI: https://doi.org/10.1084/jem.20080569 [45] Zhang Y.Z., Zou Y., Fu Z.F., Plyusnin A. Hantavirus infections in humans and animals, China. Emerg Infect Dis. 2010;16(8):1195-1203. DOI: https://doi.org/10.3201/eid1608.090470 [46] Slough M.M., Chandran K., Jangra R.K. Two Point Mutations in Old World Hantavirus Glycoproteins Afford the Generation of Highly Infectious Recombinant Vesicular Stomatitis Virus Vectors. mBio. 2019, 10(1):e02372-18. DOI: https://doi.org/10.1128/mBio.02372-18 [47] Liu, Y; Sheng, J; Fokine, A; Meng, G; Shin, W.-H; Long, F; Kuhn, R. J; Kihara, D; Rossmann, M. G (2015). Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science. 347 (6217). [48] Alexandra Roux; Sabeen Lulu; Emmanuelle Waubant; Carol Glaser; Keith Van Haren, A Polio-Like Syndrome in California: Clinical, Radiologic, and Serologic Evaluation of Five Children Identified by a Statewide Laboratory over a Twelve-Months Period. Poster Session III: Child Neurology and Developmental Neurology III. Archived from the original on 10 September 2014. Retrieved 9 September 2014. [49] Liu, Y; Sheng, J; Fokine, A; Meng, G; Shin, W.-H; Long, F; Kuhn, R. J; Kihara, D; Rossmann, M. G. Structure and inhibition of EV-D68, a virus that causes respiratory illness in children. Science, 2015, 347 (6217): 71 -4. DOI: https://doi.org/10.1126/science.1261962 [50] Knoester, Marjolein. Twenty-Nine Cases of Enterovirus-D68 Associated Acute Flaccid Myelitis in Europe 2016; A Case Series and Epidemiologic Overview. The Pediatric Infectious Disease Journal, 2018, 38 (1): 16 -21. [51] Yassine H.M., Al-Natour M.Q, Lee C.W., Saif Y.M. Interspecies and intraspecies transmission of triple reassortant H3N2 influenza A viruses. Virol J. 2007;4:129. DOI: https://doi.org/10.1186/1743-422X-4-129 [52] Kawaoka, Y., O. T. Gorman, T. Ito, K. Wells, R. O. Donis, M. R. Castrucci, I. Donatelli, and R. G. Webster. 1998. Influence of host species on the evolution of the nonstructural (NS) gene of influenza A viruses. Virus Res.55:143-156. [53] Parvin, J. D., A. Moscona, W. T. Pan, J. M. Leider, and P. Palese. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. 1986, J. Virol. 59:377-383. [54] Shao W., Li X., Goraya M.U., Wang S., Chen J.L. Evolution of Influenza A Virus by Mutation and Re-Assortment. Int J Mol Sci. 2017;18(8):1650. DOI: https://doi.org/10.3390/ijms18081650 [55] Sohrabi C, Alsafi Z, O’Neill N, et al. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19), Int J Surg. 2020;76:71-76. DOI: https://doi.org/10.1016/j.ijsu.2020.02.034 [56] Kristin et al., 2020 van Barneveld K, Quinlan M, Kriesler P, et al. The COVID-19 pandemic: Lessons on building more equal and sustainable societies. The Economic and Labour Relations Review. 2020;31(2):133-157. DOI: https://doi.org/10.1177/1035304620927107 [57] Xiaolu Tang, Changcheng Wu, Xiang Li, Yuhe Song, Xinmin Yao, Xinkai Wu, Yuange Duan, Hong Zhang, Yirong Wang, Zhaohui Qian, Jie Cui, Jian Lu, On the origin and continuing evolution of SARS-CoV-2, National Science Review, 2020, 7(6): 1012 -1023. https://doi.org/10.1093/nsr/nwaa036 [58] Koonin EV, Dolja VV, Krupovic M, Varsani A, Wolf YI, Yutin N, Zerbini FM, Kuhn JH. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol Mol Biol Rev.2020;84(2):e00061-19. DOI: https://doi.org/10.1128/MMBR.00061-19 [59] Shahhosseini, Nariman; Babuadze, George; Wong, Gary; Kobinger, Gary (2021). Mutation Signatures and In Silico Docking of Novel SARS-CoV-2 Variants of Concern. Microorganisms. 9 (5):926. DOI: https://doi.org/10.3390/microorganisms9050926 [60] Li et al., 2020, Cell 182, 1284 -1294 September 3, 2020 Elsevier Inc. https://doi.org/10.1016/j.cell.2020.07.012 [61] Zhukova A, Blassel L, Lemoine F, Morel M, Voznica J, Gascuel O (November 2020). Origin, evolution and global spread of SARS-CoV-2. Comptes Rendus Biologies: 1 -20. DOI: https://doi.org/10.5802/crbiol.29 [62] Kupferschmidt K 2021. New coronavirus variants could cause more reinfections, require updated vaccines. Science. American Association for the Advancement of Science. DOI: https://doi.org/10.1126/science.abg6028 [63] Koshy J (8 April 2021). Coronavirus; Indian ‘double mutant’ strain named B.1.617. The Hindu. [64] Rafael Sanjuán et al, 2010). Rafael Sanjuán, Miguel R. Nebot, Nicola Chirico, Louis M. Mansky, Robert Belshaw Viral Mutation Rates. [65] Sarah Cherian, Varsha Potdar, Santosh Jadhav, Pragya Yadav, Nivedita Gupta, Mousmi Das, Partha Rakshit, Sujeet Singh, Priya Abraham, Samiran Panda, NIC team bioRxiv Convergent evolution of SARSCoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India 2021.04.22.440932; DOI: https://doi.org/10.1101/2021.04.22.440932 [66] Shahhosseini, Nariman; Wong, Gary; Kobinger, Gary; Chinikar, Sadegh (2021). SARS-CoV-2 spillover transmission due to recombination event. Gene Reports. 23: 101045. DOI: https://doi.org/10.1016/j.genrep.2021.101045 [67] Arnold, B.F. and Colford, J.M. (2007) Treating Water with Chlorine at Point-of-Use to Improve Water Quality and Reduce Child Diarrhea in Developing Countries: A Systematic Review and Meta-Analysis. The American Journal of Tropical Medicine and Hygiene, 76, 354-364. https://doi.org/10.4269/ajtmh.2007.76.354 [68] de Zoysa I, Feachem RG (1985). Interventions for the control of diarrhoeal diseases among young children: rotavirus and cholera immunization. Bulletin of the World Health Organization 63 (3): 569 -83. [69] Click, R; Dahl-Smith, J; Fowler, L; Dubose, J; Deneau-Saxton, M; Herbert, J (2013). An osteopathic approach to reduction of readmissions for neonatal jaundice. Osteopathic Family Physician, 2013, 5 (1): 17. DOI: https://doi.org/10.1016/j.osfp.2012.09.005 [70] Collier J, Longore M, Turmezei T, Mafi AR (2010). Neonatal jaundice. Oxford Handbook of Clinical Specialties. Oxford University Press. ISBN 978-0- 19-922888-1. [71] Schoonees, A; Lombard, M; Musekiwa, A; Nel, E; Volmink, J. Ready-to-use therapeutic food for homebased treatment of severe acute malnutrition in children from six months to five years of age. The Cochrane database of systematic reviews 6: CD009000. DOI: https://doi.org/10.1002/14651858.CD009000.pub2 [72] Lazzerini, M., Rubert, L; Pani, P. Specially formulated foods for treating children with moderate acute malnutrition in low- and middle-income countries. The Cochrane database of systematic reviews 2013, 6: CD009584. DOI: https://doi.org/10.1002/14651858 [73] Go, Y.Y., Balasuriya U.B., Lee C.K., Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res. 2014, 3(1): 58-77. [74] Upadhyay R. K., Shoeb Ahmad. Japanese encephalitis virus (JEV): it’s epidemiology, disease and vector control with special reference to immune surveillance and safety measures: A review. Journal of Pharmacy Research, 2011 4(8):2490-2499. [75] Upadhyay R. K., Epidemiology, disease transmission and pathogenesis caused by Japanese encephalitis virus: its prevention and control. American Journal of Infectious diseases and Microbiology. 2015. [76] Keiser, J., M.F. Maltese, T.E.Erlanger, R.Bos, M.Tanner, B.H.Singer, J. Utzinger, Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management, Acta Trop, 2005, 95(1):40-57. [77] President Obama Considering Insurance Co-Op” KKTV.com Retrieved on August 17, 2009. [78] Kapadia, S., Shah. U., and Sikri, S.. Women’s Reproductive Health: Understanding Explanatory Models of Illness within a Socio-Psychological Content. Department of Human Development and Family Studies, Faculty of Home Science, M.S. University, Baroda, 1997. [79] Ravi Kant Upadhyay Evolution of new variants/ mutants of JE virus, its effect on neurovirulence, antigenicity, host immune responses and disease transmission in endemic areas. Journal of Viruses, (2014), Article ID 830396, 24 pages. http://dx.doi.org/10.5402/2013/830396 [80] Penders B., Vaccines, science and trust. Nat Microbiol. 2017;2:17076. [81] Sax, PE; Baden, LR When to start antiretroviral therapy—ready when you are?. The New England Journal of Medicine, 2009; 360 (18): 1897 -9. DOI: https://doi.org/10.1056/NEJMe0902713 [82] Martins R.M., Maia M.L., Farias RH, Camacho LA., Freire M.S., Galler R, et al., 17DD yellow fever vaccine: a double blind, randomized clinical trial of immunogenicity and safety on a dose-response study. Hum Vaccin Immunother 2013; 9:879-88. [83] Wiedermann U, Garner-Spitzer E, Wagner A. Primary vaccine failure to routine vaccines: Why and what to do? Hum Vaccin Immunother. 2016;12(1):239-43. DOI: https://doi.org/10.1080/21645515.2015.1093263 [84] Usonis V, Bakasenas V, Kaufhold A, Chitour K, Clemens R. Reactogenicity and immunogenicity of a new live attenuated combined measles, mumps and rubella vaccine in healthy children. Pediatr Infect Dis J 1999; 18:42-8.