Global Effect of Climate Change on Seasonal Cycles, Vector Population and Rising Challenges of Communicable Diseases: A Review
Source: By:Authors
DOI: https://doi.org/10.30564/jasr.v6i1.5165
Abstract:[1] Olivier, J.G.J., Peters, J.A.H.W. (editors), 2019. Trends in global CO2 and total greenhouse gas emissions: 2019 report; 2020 May 26; PBL Netherlands Environmental Assessment Agency, The Hague. Australia: PBL Publishers. Avail-able from: https://www.pbl.nl/sites/default/files/downloads/pbl-2020-trends-in-global-co2-and-total-greenhouse-gas-emissions-2019-re-port_4068.pdf [2] Olivier, J.G.J., Peters, J.A.H.W., 2018. Trends in global CO2 and total GHG emissions: 2018 report; 2018 May 12; PBL Netherlands Environ-mental Assessment Agency, The Hague. Avail-able from: https://www.pbl.nl/en/publications/trends-in-global-co2-and-total-greenhouse-gase-missions-2018-report [3] IPCC, 2014. The Fifth Assessment Report (AR5) of the United Nations Intergovernmental Panel on Climate Change (IPCC) [Internet]. Available from: https://www.ipcc.ch/report/ar5/syr/ [4] Lüthi, D., Le Floch, M., Bereiter, B., et al., 2008. High-resolution carbon dioxide concen-tration record 650,000-800,000 years before present. Nature. 453(7193), 379-382. [5] IPCC, 2018. Global Warming of 1.5°C: IPCC Spe-cial Report on impacts of global warming of 1.5°C above pre-industrial levels in context of strength-ening response to climate change, sustainable development, and efforts to eradicate poverty (1st edition). Cambridge University Press: Cambridge. DOI: https://doi.org/10.1017/9781009157940.001 [6] Schuckman, K., Cheng, L., Palmer, M.D., et al., 2020. Heat stored in the earth system: Where does the energy go? Earth System Science Data. 12(3), 2013-2041. [7] Broeker, W.S., 1975. Climatic change: Are we on the brink of a pronounced global warming?Science. 189(4201), 460-463. [8] NASA, 2019. The Causes of Climate Change[Internet]. Climate Change: Vital signs of the planet. [retrieved 2019 May 8]. Available from: https://climate.nasa.gov/ [9] Wu, Sh.P., Kroeker, A., Wong, G., et al., 2016. An adenovirus vaccine expressing ebola virus variant makona glycoprotein is efficacious in guinea pigs and nonhuman primates. The Jour-nal of Infectious Diseases. 215(1), 165. DOI: https://doi.org/10.1093/infdis/jiw554 [10] Burroughs, W.J., 2005. Climate change in pre-history. Cambridge University Press: New York. DOI: https://doi.org/10.1017/CBO9780511535826. [11] Patz, J.A., Frumkin, H., Holloway, T., et al., 2014. Climate change: Challenges and opportu-nities for global health. Journal of the American Medical Association. 312(15), 1565-1580. [12] Clancy, K.M., Wagner, M.R., Reich, P.B., 1995. Ecophysiology and insect herbivory. Ecophysi-ology of Coniferous Forests. 125-180. DOI: https://doi.org/10.1016/B978-0-08-092593-6.50011-6. [13] Broghton, W., 2012. Assessing the moisture resistance of adhesives for marine environments. Adhesives in Marine Engineering. Woodhead Publishing: Sawton. pp. 155-186. [14] Arnold, B.F., Colford, J.M., 2007. Treating water with chlorine at point-of-use to improve water quality and reduce child diarrhea in de-veloping countries: a systematic review and meta-analysis. The American Journal of Trop-ical Medicine and Hygiene. 76, 354-364. DOI: https://doi.org/10.4269/ajtmh.2007.76.354. [15] Zoysa, I., Feachem, R.G., 1985. Interventions for the control of diarrhoeal diseases among young children: Rotavirus and cholera immuni-zation. Bulletin of the World Health Organiza-tion. 63(3), 569-583. [16] Click, R., Dahl-Smith, J., Fowler, L., et al., 2013. An osteopathic approach to reduction of readmissions for neonatal jaundice. Osteopathic Family Physician. 5(1), 17. [17] Collier, J., Longore, M., Turmezei, T., et al., 2010. Neonatal jaundice. Oxford Handbook of Clinical Specialties. Oxford University Press: New York. [18] Hashizume, M., Armstrong, B., Hajat, S., et al., 2007. Association between climate variability and hospital visits for non-cholera diarrhoea in Bangladesh: Effects and vulnerable groups. International Journal of Epidemiology. 36(5), 1030-1037. [19] Rossati, A., 2017. Global warming and its health impact. The International Journal of Occupa-tional and Environmental Medicine. 8(1), 7-20. [20] Fung, I.C., 2014. Cholera transmission dynamic models for public health practitioners. Emerging Themes in Epidemiology. 11(1), 1. [21] Pascual, J., Macian, M.C., Arahal, D.R., et al., 2009. Description of Enterovibrio nigricans sp. nov., reclassification of Vibrio calviensis as En-terovibrio calviensis comb. nov. and emended description of the genus Enterovibrio Thompson et al. 2002. International Journal of Systematic and Evolutionary Microbiology. 59(Pt 4), 698-704. [22] Jesudason, M.V., Balaji, V., Mukundan, U., et al., 2000. Ecological study of Vibrio cholerae in Vellore. Epidemiology & Infection. 124(2), 201-206. [23] Sheikh, N.M., Philen, R.M., Love, L.A., 1997. Chaparral-associated hepatotoxicity. Archives of Internal Medicine. 157(8), 913-919. [24] Glass, R.I., Backer, S., Huq, M.I., et al., 1982. Endemic cholera in rural Bangladesh, 1966-1980. American Journal of Epidemiology. 116, 959-970. [25] Lipp, E.K., Huq, A., Colwell, R.R., 2002. Ef-fects of global climate on infectious disease: The cholera model. Clinical Microbiology Reviews. 15(4), 757-770. [26] Faruque, S.M., Islam, M.J., Ahmad, Q.S., et al., 2005. Self-limiting nature of seasonal cholera epidemics: Role of host-mediated amplification of phage. Proceedings of the National Academy of Sciences. 102(17), 6119-6124. [27] Faruque, S.M., Naser, I.B., Islam, M.J., et al., 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proceedings of the National Academy of Sciences. 102(5), 1702-1707. [28] Ogden, N.H., 2017. Climate change and vec-tor-borne diseases of public health significance. FEMS Microbiology Letters. 364(19). [29] Caminade, C., McIntyre, K.M., Jones, A.E., 2019. Impact of recent and future climate change on vector-borne diseases. Annals of the New York Academy of Sciences. 1436(1), 157-173. [30] Hall, N.L., Barnes, S., Canuto, C., et al., 2021. Climate change and infectious diseases in Aus-tralia’s Torres Strait Islands. Australian and New Zealand Journal of Public Health. 45(2), 122-128. [31] McMichael, C., 2015. Climate change-related migration and infectious disease. Virulence. 6(6), 548-553. [32] Steen, C.J., Carbonaro, P.A., Schwartz, R.A., 2004. Arthropods in dermatology. Journal of the American Academy of Dermatology. 50(6), 819-842. [33] Prieto, A., Díaz-Cao, J.M., Fernández-Antonio, R., et al., 2018. Lesser housefly (Fannia canicu-laris) as possible mechanical vector for Aleutian mink disease virus. Veterinary Microbiology. 221, 90-93. [34] Souza Barbosa, T., Salvitti Sá Rocha, R.A., Guirado, C.G., et al., 2008. Oral infection by Diptera larvae in children: A case report. Inter-national Journal of Dermatology. 47(7), 696-699. [35] Hassona, Y., Scully, C., Aguida, M., et al., 2014. Flies and the mouth. Journal of Investigative and Clinical Dentistry. 5(2), 98-103. [36] Pearce, J.C., Learoyd, T.P., Langendorf, B.J., et al., 2018. Japanese encephalitis: The vectors, ecology and potential for expansion. Journal of Travel Medicine. 25(Suppl_1), S16-S26. [37] Meneghim, R.L.F.S., Madeira, N.G., Ribolla, P.E.M., et al., 2021. Flies as possible vectors of inflammatory trachoma transmission in a Brazilian municipality. Revista do Instituto de Medicina Tropical de São Paulo. 63. DOI: https://doi.org/10.1590/S1678-9946202163066 [38] Hassan, M.U., Khan, M.N., Abubakar, M., et al., 2010. Bovine hypodermosis—a global aspect. Tropical Animal Health and Production. 42(8), 1615-1625. [39] Yadav, S., Thakur, R., Georgiev, P., et al., 2018. RDGBα localization and function at mem-brane contact sites is regulated by FFAT-VAP interactions. Journal of Cell Science. 131(1), jcs207985. [40] Asbakk, K., Kumpula, J., Oksanen, A., et al., 2014. Infestation by Hypoderma tarandi in rein-deer calves from northern Finland—prevalence and risk factors. Veterinary Parasitology. 200(1-2), 172-178. [41] Hou, W., Armstrong, N., Obwolo, L.A., et al., 2017. Determination of the cell permissive-ness spectrum, mode of RNA replication, and RNA-Protein interaction of Zika virus. BMC Infectious Diseases. 17(1), 239. [42] Deng, S.Q., Yang, X., Wei, Y., et al., 2020. A re-view on dengue vaccine development. Vaccines. 8(1), 63. [43] Nigrovic, L.E., Malley, R., Macias, C.G., et al., 2008. Effect of antibiotic pretreatment on cere-brospinal fluid profiles of children with bacterial meningitis. Pediatrics. 122(4), 726-730. [44] Malvy, D., Chappuis, F., 2011. Sleeping sick-ness. Clinical Microbiology and Infection. 17(7), 986-995. [45] Barrett, M.P., Burchmore, R.J., Stich, A., et al., 2003. The trypanosomiases. The Lancet. 362(9394), 1469-1480. [46] Gherbi, R., Bounechada, M., Latrofa, M.S., et al., 2020. Phlebotomine sand flies and Leishma-nia species in a focus of cutaneous leishmaniasis in Algeria. PLoS Neglected Tropical Diseases. 14(2), e0008024. [47] Jongejan, F., Uilenberg, G., 1994. Ticks and control methods. Revue Scientifique et Tech-nique (International Office of Epizootics). 13(4), 1201-1226. [48] Tsuji, N., Fujisaki, K., 2007. Longicin plays a crucial role in inhibiting the transmission of Ba-besia parasites in the vector tick Haemaphysalis longicornis. Future Microbiology. 2(6), 575-578. [49] Walker, A.R., 2001. Age structure of a popu-lation of Ixodes ricinus (Acari: Ixodidae) in relation to its seasonal questing. Bulletin of En-tomological Research. 91(1), 69-78. [50] Randolph, S., 2002. Predicting the risk of tick-borne diseases. International Journal of Medical Microbiology. 291(33), 6-10. [51] Roth, T., Lane, R.S., Foley, J., 2017. A molecu-lar survey for francisella tularensis and rickettsia spp. in haemaphysalis leporispalustris (Acari: Ixodidae) in Northern California. Journal of Medical Entomology. 54(2), 492-495. [52] Guizzo, M.G., Parizi, L.F., Nunes, R.D., et al., 2017. A Coxiella mutualist symbiont is essential to the development of Rhipicephalus microplus. Scientific Reports. 7(1), 17554. [53] Ben-Yosef, M., Rot, A., Mahagna, M., et al., 2020. Coxiella-like endosymbiont of rhipiceph-alus sanguineus is required for physiological processes during ontogeny. Frontiers in Micro-biology. 11, 493. [54] Couper, L.I., Yang, Y., Yang, X.F., et al., 2020. Comparative vector competence of North Amer-ican lyme disease vectors. Parasites & Vectors. 13(1), 29. [55] Rossati, A., Bargiacchi, O., Kroumova, V., et al., 2016. Climate, environment and transmission of malaria. Infezioni in Medicina. 24(2), 93-104. [56] Abbasi, E., Vahedi, M., Bagheri, M., et al., 2022. Monitoring of synthetic insecticides resistance and mechanisms among malaria vector mosqui-toes in Iran: A systematic review. Heliyon. 8(1), e08830. [57] Pimenta, P.F., Orfano, A.S., Bahia, A.C., et al., 2015. An overview of malaria transmission from the perspective of Amazon Anopheles vectors. Memórias do Instituto Oswaldo Cruz. 110(1), 23-47. [58] Pocquet, N., Darriet, F., Zumbo, B., et al., 2014. Insecticide resistance in disease vectors from Mayotte: An opportunity for integrated vector management. Parasites & Vectors. 7, 299. [59] Chira, S., Jackson, C.S., Oprea, I., et al., 2015. Progresses towards safe and efficient gene ther-apy vectors. Oncotarget. 6(31), 30675-30703. [60] Ibraheim, R., Tai, P.W.L., Mir, A., et al., 2021. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-di-rected repair in vivo. Nature Communications. 12(1), 62-67. [61] Kasala, D., Yoon, A.R., Hong, J., et al., 2016. Evolving lessons on nanomaterial-coated viral vectors for local and systemic gene therapy. Nanomedicine (Lond). 11(13), 1689-1713. [62] Weklak, D., Pembaur, D., Koukou, G., et al., 2021. Genetic and chemical capsid modifica-tions of adenovirus vectors to modulate vec-tor-host interactions. Viruses. 13(7), 1300. [63] Coutinho-Abreu, I.V., Sharma, N.K., Ro-bles-Murguia, M., et al., 2010. Targeting the midgut secreted PpChit1 reduces Leishmania major development in its natural vector, the sand fly Phlebotomus papatasi. PLoS Neglected Tropical Diseases. 4(11), e901. [64] Furuya-Kanamori, L., Liang, S., Milinovich, G., et al., 2016. Co-distribution and co-infection of chikungunya and dengue viruses. BMC Infec-tious Diseases. 16, 84. [65] Van Looveren, D., Giacomazzi, G., Thiry, I., et al., 2021. Improved functionality and potency of next generation BinMLV viral vectors toward safer gene therapy. Molecular Therapy-Methods & Clinical Development. 23, 51-67. [66] Nambiar, B., Cornell-Sookdeo, C., Berthelette, P., et al., 2017. Characteristics of minimally oversized adeno-associated virus vectors encod-ing human factor VIII generated using producer cell lines and triple transfection. Human Gene Therapy Methods. 28(1), 23-38. [67] Zhou, Q., Uhlig, K.M., Muth, A., et al., 2015. Exclusive transduction of human CD4+ T Cells upon systemic delivery of CD4-Targeted Len-tiviral vectors. The Journal of Immunology. 195(5), 2493-2501. [68] Qiu, Z.W., Zhang, X.L., 2006. Innate immune defense in anopheline mosquitoes against plas-modium infection. Chinese Journal of Parasitol-ogy & Parasitic Diseases. 24(5), 370-374. [69] Dimopoulos, G., Müller, H.M., Kafatos, F.C., 1999. How does Anopheles gambiae kill malaria parasites? Parassitologia. 41(1-3), 169-175. [70] Meister, S., Koutsos, A.C., Christophides, G.K., 2004. The Plasmodium parasite—a ‘new’ chal-lenge for insect innate immunity. International Journal for Parasitology. 34(13-14), 1473-1482. [71] Chaves, L.F., Koenraadt, C.J., 2010. Climate change and highland malaria: Fresh air for a hot debate. The Quarterly Review of Biology. 85(1), 27-55. [72] Omer, S.B., Benjamin, R.M., Brewer, N.T., et al., 2021. Promoting COVID-19 vaccine ac-ceptance: Recommendations from the Lancet Commission on vaccine refusal, acceptance, and demand in the USA. The Lancet. 398(10317), 2186-2192. [73] Poland, G., Barrett, A., 2009. The old and the new: Successful vaccines of the 20th century and approaches to making vaccines for the im-portant diseases of the 21st century. Current Opinion in Immunology. 21(3), 305-307. [74] Hussain, A., Ali, S., Ahmed, M., et al., 2018. The anti-vaccination movement: A regression in modern medicine. Cureus. 10(7), e2919. [75] Drolet, M., Bénard, É., Boily, M.C., et al., 2015. Population-level impact and herd effects fol-lowing human papillomavirus vaccination pro-grammes: A systematic review and meta-analy-sis. The Lancet Infectious Diseases. 15(5), 565-580. [76] Schiller, J.T., Müller, M., 2015. Next generation prophylactic human papillomavirus vaccines. The Lancet Oncology. 16(5), e217-e225. [77] Wimmers, F., Pulendran, B., 2020. Emerg-ing technologies for systems vaccinology—multi-omics integration and single-cell (epi)genomic profiling. Current Opinion in Immunol-ogy. 65, 57-64. [78] Randolph, H.E., Barreiro, L.B., 2020. Herd im-munity: Understanding COVID-19. Immunity. 52(5), 737-741. [79] Berry, M.P.R., Blankley, S., Graham, C.M., et al., 2013. Systems approaches to studying the immune response in tuberculosis. Current Opin-ion in Immunology. 25(5), 579-587. [80] Andersen, J., Woodworth, S., 2014. Tuberculo-sis vaccine—rethinking the current paradigm. Trends in Immunology. 35(8), 387-395. [81] Grassly, N.C., Fraser, C., 2008. Mathematical models of infectious disease transmission. Na-ture Reviews Microbiology. 6(6), 477-487. [82] McLeman, R.A., Smit, B., 2006. Migration as an adaptation to climate change. Climatic Change. 76, 31-53. [83] Hunter, L.M., 2005. Migration and environmen-tal hazards. Population and Environment. 26, 273-302. [84] Adger, W.N., 2006. Vulnerability. Global Envi-ronmental Change. 16(3), 268-281. [85] Smit, B., Wandel, J., 2006. Adaptation, adaptive capacity and vulnerability. Global Environmen-tal Change. 16, 282-292. [86] Glantz, M., 1991. The use of analogies in fore-casting ecological and societal responses to global warming. Environment. 33, 10-33. [87] Gutmann, M., Field, V., 2010. Katrina in histor-ical context: Environment and migration in the US. Population and Environment. 31(1), 3-19. [88] Rosenzweig, C., Hillel, D., 1993. The Dust Bowl of the 1930s: Analog of greenhouse effect in the Great Plains? American Society of Agron-omy, Crop Science Society of America, and Soil Science Society of America. 22, 9-22. [89] Perch-Nielsen, S., Bättig, M., Imboden, D., 2008. Exploring the link between climate change and migration. Climatic Change. 91, 375-393. [90] Tacoli, C., 2009. Crisis or adaptation? Migration and climate change in a context of high mobili-ty. Environment and Urbanization. 21, 513-525. [91] Adam, R.D., 2001. Biology of Giardia lamblia. Clinical Microbiology Reviews. 14(3), 447-475. [92] Sabbatani, S., Manfredi, R., Fiorino, S., 2010. Malaria infection and human evolution. Infezi-oni in Medicina. 18(1), 56-74. [93] Hicks, D.J., Fooks, A.R., Johnson, N., 2012. Developments in rabies vaccines. Clinical & Experimental Immunology. 169(3), 199-204. [94] Ma, P.Y., Tan, J.E., Hee, E.W., et al., 2021. Hu-man genetic variation influences enteric fever progression. Cells. 10, 345. [95] Asadgol, Z., et al., 2019. The effect of climate change on cholera disease: The road ahead us-ing artificial neural network. PLoS One. 14(11), e0224813. [96] Nahid, P., Dorman, S.E., Alipanah, N., et al., 2016. Official American thoracic society/centers for disease control and prevention/infectious diseases society of America clinical practice guidelines: Treatment of drug-susceptible tu-berculosis. Clinical Infectious Diseases. 63(7), e147-e195. [97] Richardson, M., 2009. The ecology of the Zygo-mycetes and its impact on environmental expo-sure. Clinical Infectious Diseases. 15(5), 2-9. [98] Roden, M.M., Zaoutis, T.E., Buchanan, W.L., et al., 2005. Epidemiology and outcome of zygo-mycosis: A review of 929 reported cases. Clini-cal Infectious Diseases. 41(5), 634-653. [99] Wucherpfenning, K.W., 2001. Mechanism of induction of autoimmunity by infectious agents. Journal of Clinical Investigation. 108, 1097. [100] Carlson, C.J., Albery, G.F., Merow, C., et al., 2022. Climate change increases cross-species viral transmission risk. Nature. 607, 555-562. Available from: https://www.nature.com/arti-cles/s41586-022-04788-w [101] Shope, R., 1991. Global climate change and infectious diseases. Environmental Health Per-spectives. 96, 171-174. [102] O’Neill, L.A.J., Netea, M.G., 2020. BCG-in-duced trained immunity: Can it offer protection against COVID-19? Nature Reviews Immunol-ogy. 20(6), 335-337. [103] Woolhouse, M.E., Webster, J.P., Domingo, E., et al., 2002. Biological and biomedical impli-cations of the co-evolution of pathogens and their hosts. Nature Genetics. 32(4), 569-577. [104] Rinker, D.C., Pitts, R.J., Zwiebel, L.J., 2016. Disease vectors in the era of next generation sequencing. Genome Biology. 17(1), 95.