Biodiverse, Productive, and Socially Just Silvopastures: a Solution for the Brazilian Drylands
Source: By:Author(s)
DOI: https://doi.org/10.30564/jrb.v2i3.2102
Abstract:Drylands constitute more than 40% of global land and are particularly vulnerable to the impacts of climate change. In many of these drylands, livestock activities are a major form of land-use. In Brazil, the two major dryland biomes, Cerrado and Caatinga, play a key role in the country’s livestock activities. While important economically, these activities also contribute to the emission of high amounts of greenhouse gases. One suggested strategy for mitigating the impacts of climate change is the adoption of silvopastoral systems (SPS) which combine trees, pasture, and animals simultaneously on the same unit of land. Farmers in the drylands of Brazil have a long history of practicing SPS. The practice of silvopasture is relevant to both climate change and the economy, but not necessarily to the issues of biodiversity loss and economic inequality. The lack of interdisciplinarity in rural agricultural development projects in the past, such as those related to the “Green Revolution”, resulted in the aggravation of economic inequalities and biodiversity loss. The present work, focusing on the Brazilian Drylands, reviews these issues to justify the need for interdisciplinary projects considering multiple variables like soil quality, tree density, biodiversity richness, and farmers’ perception.
References:[1] United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. 2015. [2] FAO. How to Feed the World in 2050. 2017. [3] Dlugokencky, E., Tans, P. NOAA/ESR, 2019 [Online]. Available: https://www.esrl.noaa.gov/gmd/ccgg/trends/ [Accessed: 25- Nov-2019] [4] IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment. IPCC, Geneva, Switzerland, 2007. [5] Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations (FAO), 2013. [6] MAPA. Plano Setorial de Mitigação e de Adaptação Às Mudanças Climáticas Para a Consolidação de Uma Economia de Baixa Emissão de Carbono Na Agricultura: Plano ABC (Agricultura de Baixa Emissão de Carbono), Ministério da Agricultura, Pecuária e Abastecimento, Ministério do Desenvolvimento Agrário, coordenação da Casa Civil da Presidência da República, Brasília, DF, Brazil, 2012. [7] USDA. Foreign Agricultural Service. Livestock and Poultry: World Markets and Trade. 2019. [8] WRI. CAIT. WRI’s Climate Data Explorer. 2019. [Online]. Available: http://cait.wri.org/ [Accessed: 20-May-2019]. [9] SEEG. Emissões Do Setor de Agropecuária: Período 1970 - 2016, 2018. [10] Conant, R. T., Paustian, K. Potential Soil Carbon Sequestration in Overgrazed Grassland Ecosystems. Global Biogeochem. Cycles, 2002, 16(4): 90-1-90-9. [11] MEA. Ecosystems and Human Well-Being. Island Press, Washington, DC, 2005. [12] UNEP-WCMC. A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands. Cambridge, UK, 2007. [13] Burney, J., Cesano, D., Russell, J., La Rovere, E. L., Corral, T., Coelho, N. S., Santos, L. Climate Change Adaptation Strategies for Smallholder Farmers in the Brazilian Sertão. Clim. Change, 2014, 126(1-2): 45-59. [14] FAO. World Livestock 2011 - Livestock in Food Security, Food and Agriculture Organization of the United Nations, Rome, Italy, 2011. [15] IBGE. Mapa de Biomas e de Vegetação Do Brasil, Rio de Janeiro, RJ, Brazil, 2004. [16] Beuchle, R., Grecchi, R. C., Shimabukuro, Y. E., Seliger, R., Eva, H. D., Sano, E., Achard, F. Land Cover Changes in the Brazilian Cerrado and Caatinga Biomes from 1990 to 2010 Based on a Systematic Remote Sensing Sampling Approach. Appl. Geogr.,2015, 58: 116-127. [17] Forzza, R. C., Baumgratz, J. F. A., Bicudo, C. E. M., Canhos, D. A. L., Carvalho Junior, A. A., Costa, A. F.,Costa, D. P., Hopkins, M., Leitman, P. M., Lohmann, L. G. Catálogo de Plantas e Fungos Do Brasil. Andrea Jakobsson Estúdio and Jardim Botânico do Rio de Janeiro, Rio de Janeiro, RJ, 2010. [18] MMA, IBAMA. Monitoramento Do Desmatamento Nos Biomas Brasileiros Por Satélite: Monitoramento Do Bioma Caatinga 2008-2009. Ministério do Meio Ambiente / Instituto Brasileiro do Meio Ambiente,2011. [19] Santana, M. O. Atlas Das Áreas Susceptíveis à Desertificação Do Brasil. MMA / SRH / UFPB, Brasília,DF, Brazil, 2007. [20] Araújo Filho, J. A. Manejo Pastoril Sustentável Da Caatinga. Projeto Dom Helder Camara, Recife, PE, Brazil, 2013. [21] Braga, R. História Da Comissão Científica de Exploração. Imprensa Universitária do Ceará, Fortaleza, CE, 1962. [22] Aguiar, M. I. de, Maia, S. M. F., Xavier, F. A. da S., de Sá Mendonça, E., Filho, J. A. A., Oliveira, T. S. Sediment, Nutrient and Water Losses by Water Erosion under Agroforestry Systems in the Semi-Arid Region in Northeastern Brazil. Agrofor. Syst., 2010, 79(3): 277-289. [23] Cândido, M. J. D., Araújo, G. G. L., Cavalcante, M. A. B. Pastagens No Ecossistema Semi-Árido Brasileiro: Atualização e Perspectivas Futuras. In: Reunião Anual Da Sociedade Brasileira De Zootecnia, Sociedade Brasileira de Zootecnia, Goiânia, GO, 2005, 85-94. [24] Menezes, R. S. C., Salcedo, I. H. Influence of Tree Species on the Herbaceous Understory and Soil Chemical Characteristics in a Silvopastoral System in Semi-Arid Northeastern Brazil. Rev. Bras. Cienc. Solo, 1999, 23(4): 817-826. [25] Pacheco, A. R., Chaves, R. de Q., Nicoli, C. M. L. Integration of Crops, Livestock, and Forestry: A System of Production for the Brazilian Cerrados. Eco-efficiency from Vis. to Real., 2013, 51-60. [26] IBGE. Mapa de Biomas e de Vegetação Do Brasil. Rio de Janeiro, RJ, Brazil, 2004. [27] Bustamante, M., Nardoto, G., Pinto, A., Resende, J., Takahashi, F., Vieira, L. Potential Impacts of Climate Change on Biogeochemical Functioning of Cerrado Ecosystems. Brazilian J. Biol., 2012, 72(3): 655-671. [28] Mittermeier, R. A., Gil, P. R., Hoffmann, M., Pilgrim, J., Brooks, T., Mittermeier, C. G., Lamoreux, J. Fonseca, G. A. B. Da. Hotspots Revisited. CEMEX, México City, 2004. [29] IBGE. Censo Agropecuário 2017, Rio de Janeiro, RJ, Brazil, 2018. [30] Parente, L., Ferreira, L., Faria, A., Nogueira, S., Araújo, F., Teixeira, L., Hagen, S. Monitoring the Brazilian Pasturelands: A New Mapping Approach Based on the Landsat 8 Spectral and Temporal Domains. Int. J. Appl. Earth Obs. Geoinf., 2017, 62: 135-143. [31] Klink, C., Moreira, A. Past and Current Human Occupation, and Land Use. The Cerrados of Brazil:Ecology and Natural History of a Neotropical Savanna., P. Oliveira, and R. Marquis, eds., Columbia University Press, New York, USA, 2002: 69-88. [32] Diniz-Filho, J. A. F., Oliveira, G. de, Lobo, F., Ferreira, L. G., Bini, L. M., Rangel, T. F. L. V. B. Agriculture, Habitat Loss and Spatial Patterns of Human Occupation in a Biodiversity Hotspot. Sci. Agric., 2009, 66(6): 764-771. [33] Pereira, O., Ferreira, L., Pinto, F., Baumgarten, L. Assessing Pasture Degradation in the Brazilian Cerrado Based on the Analysis of MODIS NDVI Time-Series. Remote Sens., 2018, 10(11): 1761. [34] Project MapBiomas. Collection [Version3.1] of Brazilian Land Cover & Use Map Series. [Online].Available: http://mapbiomas.org/ [Accessed: 03-Dec-2019]. [35] MMA. Segundo Inventário Brasileiro de Emissões e Remoções Antrópicas de Gases de Efeito Estufa-Emissões de CO2 Pelo Uso Da Terra, Mudança Do Uso Da Terra e Florestas. Brasília, DF, Brazil, 2010. [36] Marengo, J. A., Jones, R., Alves, L. M., Valverde, M. C. Future Change of Temperature and Precipitation Extremes in South America as Derived from the PRECIS Regional Climate Modeling System. Int. J. Climatol., 2009, 29(15): 2241-2255. [37] Latawiec, A. E., Strassburg, B. B. N., Valentim, J. F., Ramos, F., Alves-Pinto, H. N. Intensification of Cattle Ranching Production Systems: Socioeconomic and Environmental Synergies and Risks in Brazil. Animal, 2014, 8(8): 1255-1263. [38] FAO, PAR. Biodiversity for Food and Agriculture: Contributing to Food Security and Sustainability in a Changing World. Rome, Italy, 2011. [39] Nair, P. K. R., Garrity, D. Agroforestry -The Future of Global Land Use Advances in Agroforestry. 2012. [40] Watson, R. T., Noble, I. R., Bolin, B., Ravindranath, N. H., Verardo, D. J., Dokken, D. J. IPCC Special Report on Land Use, Land-Use Change, and Forestry. IPCC, Geneva, Switzerland, 2000. [41] Nair, P. K. R., Kumar, B. M., Nair, V. D. Agroforestry as a Strategy for Carbon Sequestration. J. Plant Nutr. Soil Sci., 2009, 172(1): 10-23. [42] Apolinário, V. X. O., Dubeux, J. C. B., Lira, M. A., Ferreira, R. L. C., Mello, A. C. L., Coelho, D. L., Muir, J. P., Sampaio, E. V. S. B. Decomposition of Arboreal Legume Fractions in a Silvopastoral System. Crop Sci., 2016, 56(3): 1356-1363. [43] Montagnini, F., Nair, P. K. R. Carbon Sequestration: An Underexploited Environmental Benefit of Agroforestry Systems. Agrofor. Syst., 2004, 61-62(1-3):281-295. [44] Nair, P. K. R. Carbon Sequestration Studies in Agroforestry Systems: A Reality-Check. Agrofor. Syst., 2012, 86(2): 243-253. [45] Oelbermann, M., Voroney, R. P., Thevathasan, N. V., Gordon, A. M., Kass, D. C. L., Schlönvoigt, A. M. Soil Carbon Dynamics and Residue Stabilization in a Costa Rican and Southern Canadian Alley Cropping System. Agrofor. Syst., 2006, 68(1): 27-36. [46] Saha, S. K., Nair, P. K. R., Nair, V. D., Kumar, B. M. Carbon Storage in Relation to Soil Size-Fractions under Tropical Tree-Based Land-Use Systems. Plant Soil, 2010, 328(1): 433-446. [47] Tonucci, R. G., Nair, P. K. R., Nair, V. D., Garcia, R., Bernardino, F. S. Soil Carbon Storage in Silvopasture and Related Land-Use Systems in the Brazilian Cerrado. J. Environ. Qual., 2011, 40(3): 833. [48] Paciullo, D. S. C., Pires, M. F. A., Aroeira, L. J. M., Morenz, M. J. F., Maurício, R. M., Gomide, C. A. M., Silveira, S. R. Sward Characteristics and Performance of Dairy Cows in Organic Grass-Legume Pastures Shaded by Tropical Trees. 2014, Animal, 8(8): 1264-1271. [49] Xavier, D. F., da Silva Lédo, F. J., de Campos Paciullo, D. S., Urquiaga, S., Alves, B. J. R., Boddey, R. M. Nitrogen Cycling in a Brachiaria-Based Silvopastoral System in the Atlantic Forest Region of Minas Gerais, Brazil. Nutr. Cycl. Agroecosystems, 2014, 99(1): 45-62. [50] Nair, P. K. R., Nair, V. D., Mohan Kumar, B., Showalter, J. M. Carbon Sequestration in Agroforestry Systems. Advances in Agronomy, Elsevier, 2010:237-307. [51] Oliveira, E. B. De, Ribaski, J., Augusto, É., Ferreira, J., Junior, P. Produção , Carbono e Rentabilidade Econômica de Pinus Elliottii e Eucalyptus Grandis Em Sistemas Silvipastoris No Sul Do Brasil. Pesqui. Florest. Bras. Colombro-PR, 2008, 57(1): 45-56. [52] Resende, L. O., Müller, M. D., Kohmann, M. M., Pinto, L. F. G., Cullen Junior, L., Zen, S., Rego, L. F. G. Silvopastoral Management of Beef Cattle Production for Neutralizing the Environmental Impact of Enteric Methane Emission. Agrofor. Syst., 0123456789, 2019. [53] Nair, P. K. R.. Grand Challenges in Agroecology and Land Use Systems. Front. Environ. Sci., 2014, 2: 1-4. [54] Paulson, S. Masculine and Feminine Conditions and Relations in the (Re)Production of Andean Silvopasture Systems. Earthscan Reader on Gender and Forests, C.J.P. Colfer, E. Marlène, B. Sijapati, Basnett, and S.S. Hummel, eds., Routledge, 2017. [55] Pinheiro, F. M., Nair, P. K. R. Silvopasture in the Caatinga Biome of Brazil: A Review of Its Ecology, Management, and Development Opportunities. For. Syst., 2018, 27(1): 1-16. [56] Chatterjee, N., Nair, P. K. R., Chakraborty, S., Nair, V. D. Changes in Soil Carbon Stocks across the Forest-Agroforest-Agriculture/Pasture Continuum in Various Agroecological Regions: A Meta-Analysis. Agric. Ecosyst. Environ., 2018, 266: 55-67. [57] Correia, M. D., Menezes, R. S. C., Olinda, R. A. Modelagem Geoestatística Da Distribuição de Carbono Do Solo e Biomassa de Herbáceas Em Sistema Silvopastoril Na Região Nordeste Do Brasil. Rev. Bras. Biom., 2014, 31(2): 116-129. [58] Costa, M. P., Schoeneboom, J. C., Oliveira, S. A., Viñas, R. S., de Medeiros, G. A. A Socio-Eco-Efficiency Analysis of Integrated and Non-Integrated Crop-Livestock-Forestry Systems in the Brazilian Cerrado Based on LCA. J. Clean. Prod., 2018, 171: 1460-1471. [59] Carlson, F. A. Brazilian Agriculture: Prospects and Challenges. Agron. J., 1925, 17(11): 725-730. [60] Pinheiro, F. M., Nair, P. K. R., Paulson, S., Nair, V. D., DeVore, J., Tonucci, R. G. An Innovative, Farmer Initiative of Silvopastoral Restoration in a Degraded Semiarid Caatinga Region of Brazil. 4th World Congress on Agroforesry. CIRAD, Montpellier, Fr, 2019, 708. [61] Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., Sorlin, S. Planetary Boundaries:Guiding Human Development on a Changing Planet. Science (80-). 2015, 347(6223): 1259855-1259855. [62] Oxfam. Left behind by the G20. Oxford, UK, 2012. [63] Paulino, E. T. The Agricultural, Environmental and Socio-Political Repercussions of Brazil’s Land Governance System. Land use policy, 2014, 36: 134-144. [64] MDA. Plano Safra Da Agricultura Familiar 2012/2013. Brasília, DF, Brazil, 2012. [65] Nunes, B., Bennett, D., Marques, S. Sustainable Agricultural Production: An Investigation in Brazilian Semi-Arid Livestock Farms. J. Clean. Prod., 2014, 64: 414-425. [66] OECD. Gender Equality: A Key for Poverty Alleviation and Sustainable Development. SDC, 2003. [67] Altieri, M. A., Toledo, V. M. The Agroecological Revolution in Latin America: Rescuing Nature, Ensuring Food Sovereignty and Empowering Peasants.J. Peasant Stud., 2011, 38(3): 587-612. [68] Altieri, M. A. Agroecology: The Science of Natural Resource Management for Poor Farmers in Marginal Environments. Agric. Ecosyst. Environ., 2002, 93(1- 3): 1-24. [69] IAASTD. Agriculture at a Crossroads. Island Press, Washington, DC, 2009. [70] Holt-Giménez, E. Campesino a Campesino: Voices from Latin America’s Farmer to Farmer Movement for Sustainable Agriculture. Food First Books, Oakland, CA, 2006. [71] Rosset, P. M., Sosa, B. M., Jaime, A. M. R., Lozano, D. R. Á. The Campesino-to-Campesino Agroecology Movement of ANAP in Cuba: Social Process Methodology in the Construction of Sustainable Peasant Agriculture and Food Sovereignty. J. Peasant Stud., 2011, 38(1): 161-191. [72] Altieri, M. A., Koohafkan, P. Enduring Farms: Climate Change, Smallholders and Traditional Farming Communities. Third World Network (TWN) Penang, 2008. [73] Apolinário, V. X. O., Dubeux, J. C. B., Lira, M. A., Ferreira, R. L. C., Mello, A. C. L., Santos, M. V. F., Sampaio, E. V. S. B., Muir, J. P. Tree Legumes Provide Marketable Wood and Add Nitrogen in Warm-Climate Silvopasture Systems. Agron. J., 2015, 107(5): 1915-1921. [74] UNFCCC. Adoption of the Paris Agreement. 2016. [75] Brazil. Intended Nationally Determined Contribution: Towards Achieving the Objective of the United Nations Framework Convention on Climate Change. 2015. [76] Escobar, H. Brazilian President Attacks Deforestation Data. Science (80-), 2019, 365(6452): 419-419. [77] Tollefson, J. Tropical Trump’sparks Unprecedented Crisis for Brazilian Science. Nature, 2019, 572: 161- 162. [78] Abessa, D., Famá, A., Buruaem, L. The Systematic Dismantling of Brazilian Environmental Laws Risks Losses on All Fronts. Nat. Ecol. Evol., 2019, 3(4): 510-511. [79] United Nations. Convention on Biological Diversity, 1992. [80] MMA. National Biodiversity Strategy and Action Plan, Brasília, DF, Brazil, 2017. [81] IPCC. Climate Change 2014: Synthesis Report. Geneva, Switzerland, 2014. [82] Simon, M. F., Grether, R., Queiroz, L. P., Skema, C., Pennington, R. T., Hughes, C. E. Recent Assembly of the Cerrado, a Neotropical Plant Diversity Hotspot, by in Situ Evolution of Adaptations to Fire. Proc. Natl. Acad. Sci., 2009, 106(48): 20359-20364. [83] IBGE. Censo Agropecuário 2006. Rio de Janeiro, RJ, Brazil, 2009. [84] Picasso, V. D. The ‘Biodiversity-Ecosystem Function Debate’: An Interdisciplinary Dialogue between Ecology, Agricultural Science, and Agroecology. Agroecol. Sustain. Food Syst., 2018, 42(3): 264-273.