An Insight of Parasitic Weeds in Africa and Scientific Developments: A Review
Source: By:Christopher Kalima Phiri, Vernon H. Kabambe, James Bokosi
DOI: https://doi.org/10.30564/jbr.v5i2.5535
Abstract:Parasitic weeds are a major threat to food security in Africa and control measures mostly done by smallholder farmers are not effective in eradicating the parasites. This results in a yield loss up to 100%. Parasitic weeds comprise Alectra vogelii, Striga spp., Orobanche spp., Rafflesia spp., and Phoradendron spp. Parasitic attachment is successful when three necessary conditions have been fulfilled namely the compatible host, suitable environment, and parasitic weed. These species parasite plant species through special attachment features such as modified leaves, suckers, haustoria, or modified roots. In Africa, the variability of parasitic weeds is largely driven by environmental factors such as temperature, rainfall, soil type, and crop husbandry practices. Warmer temperatures create more hospitable conditions for certain parasitic weeds, and allowing them to spread to new areas. Parasitic weed control is vital for effective crop production and the control strategies can be achieved through integrated weed control method that embraces mechanical, cultural, chemical, and biological methods. However, the most effective and crucial method is the cultivation of resistant varieties that provide long-term protection against parasitic weeds. Studies have been done on host-parasite attachment where dodder can send out new roots to infected neighbouring plants and spread their parasitic behaviour. More insight and knowledge should offer new goals for control within the life cycle of the parasitic weeds and their metabolic activities. Lastly, disciplines such as agronomy, plant breeding, nutrition, economics, and IT should play their roles effectively in combating parasitic weeds.
References:[1] Mohamed, K.I., Papes, M., Williams, R., et al., 2006. Global invasive potential of 10 parasitic witchweeds and related Orobanchaceae. AMBIO: A Journal of the Human Environment. 35(6), 281-288. DOI: https://doi.org/10.1579/05-R-051R.1 [2] Kabambe, V., Katunga, L., Kapewa, T., et al., 2008. Screening legumes for integrated management of witchweeds (Alectra vogelii and Striga asiatica) in Malawi. African Journal of Agricultural Research. 3(10), 708-715. Available from: https://www.researchgate.net/profile/V-Kabambe/publication/239921413_ [3] Parker, C., 2012. Parasitic weeds: A world challenge. Weed Science. 60(2), 269-276. DOI: https://doi.org/10.1614/WS-D-11-00068.1 [4] Phiri, C.K., Kabambe, V.H., Bokosi, J., et al., 2018. Screening for resistance mechanisms in cowpea genotypes on Alectra vogelii. American Journal of Plant Sciences. 9(6), 1362-1379. DOI: https://doi.org/10.4236/ajps.2018.96099 [5] Kroschel, J., 2002. A technical manual for parasitic weed research and extension. Springer Science & Business Media: Berlin. [6] Ejeta, G., 2007. The Striga scourge in Africa: A growing pandemic. Integrating new technologies for Striga control: Towards ending the witch-hunt. World Scientific Publishing Co Pte Ltd: Singapore. pp. 3-16. DOI: https://doi.org/10.1142/9789812771506_0001 [7] Molinero-Ruiz, L., Delavault, P., Pérez-Vich, B., et al., 2015. History of the race structure of Orobanche cumana and the breeding of sunflower for resistance to this parasitic weed: A review. Spanish Journal of Agricultural Research. 13(4), e10R01. Available from: https://digital.csic.es/handle/10261/158439 [8] Mutsvanga, S., Gasura, E., Setimela, P.S., et al., 2022. Nutritional management and maize variety combination effectively control Striga asiatica in southern Africa. CABI Agriculture and Bioscience. 3(1), 1-14. DOI: https://doi.org/10.1186/s43170-022-00108-4 [9] Pennings, S.C., Callaway, R.M., 2002. Parasitic plants: Parallels and contrasts with herbivores. Oecologia. 131(4), 479-489. DOI: https://doi.org/10.1007/s00442-002-0923-7 [10] Irving, L.J., Cameron, D.D., 2009. You are what you eat: Interactions between root parasitic plants and their hosts. Advances in Botanical Research. 50, 87-138. DOI: https://doi.org/10.1016/S0065-2296(08)00803-3 [11] Saucet, S.B., Shirasu, K., 2016. Molecular parasitic plant-host interactions. PLoS pathogens. 12(12), e1005978. DOI: https://doi.org/10.1371/journal.ppat.1005978 [12] Těšitel, J., Cirocco, R.M., Facelli, J.M., et al., 2020. Native parasitic plants: Biological control for plant invasions? Applied Vegetation Science. 23(3), 464-469. DOI: https://doi.org/10.1111/avsc.12498 [13] Yoder, J.I., Scholes, J.D., 2010. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Current Opinion in Plant Biology. 13(4), 478-484. DOI: https://doi.org/10.1016/j.pbi.2010.04.011 [14] Westwood, J.H., Depamphilis, C.W., Das, M., et al., 2012. The parasitic plant genome project: New tools for understanding the biology of Orobanche and Striga. Weed Science. 60(2), 295-306. DOI: https://doi.org/10.1614/WS-D-11-00113.1 [15] Ichihashi, Y., Mutuku, J.M., Yoshida, S., et al., 2015. Transcriptomics exposes the uniqueness of parasitic plants. Briefings in Functional Genomics. 14(4), 275-282. DOI: https://doi.org/10.1093/bfgp/elv001 [16] Michelmore, R., Coaker, G., Bart, R., et al., 2017. Foundational and translational research opportunities to improve plant health. Molecular Plant-Microbe Interactions. 30(7), 515-516. DOI: https://doi.org/10.1094/MPMI-01-17-0010-CR [17] Kabambe, V.H., Mazuma, E., Bokosi, J., et al., 2014. Release of cowpea line IT99K-494-6 for yield and resistance to the parasitic weed, Alectra Vogelii Benth in Malawi. African Journal of Plant Science. 8(4), 196-203. DOI: https://doi.org/10.5897/AJPS2013.1132 [18] Sauerborn, J., Müller-Stöver, D., Hershenhorn, J., 2007. The role of biological control in managing parasitic weeds. Crop Protection. 26(3), 246-254. DOI: https://doi.org/10.1016/j.cropro.2005.12.012 [19] Aly, R., 2007. Conventional and biotechnological approaches for control of parasitic weeds. In Vitro Cellular & Developmental Biology-Plant. 43(4), 304-317. DOI: https://doi.org/10.1007/s11627-007-9054-5 [20] Watson, A.K., 2013. Biocontrol. Parasitic orobanchaceae. Springer: Berlin. pp. 469-497. DOI: https://doi.org/10.1007/978-3-642-38146-1_26 [21] Fernández-Aparicio, M., Delavault, P., Timko, M.P., 2020. Management of infection by parasitic weeds: A review. Plants. 9(9), 1184. DOI: https://doi.org/10.3390/plants9091184 [22] Schut, M., Rodenburg, J., Klerkx, L., et al., 2015. RAAIS: Rapid appraisal of agricultural innovation systems (Part II). Integrated analysis of parasitic weed problems in rice in Tanzania. Agricultural Systems. 132, 12-24. DOI: https://doi.org/10.1016/j.agsy.2014.09.004 [23] Rodenburg, J., Morawetz, J.J., Bastiaans, L., 2015. Rhamphicarpa fistulosa, a widespread facultative hemi‐parasitic weed, threatening rice production in Africa. Weed Research. 55(2), 118-131. DOI: https://doi.org/10.1111/wre.12129 [24] Phiri, C.K., 2018. Understanding the causes of apparent strain variability on alectra vogelii and resistance mechanisms in cowpeas (Vigna unguiculata l.) in Malawi [Master’s thesis]. Lilongwe: Lilongwe University of Agriculture and Natural Resources. [25] Haussmann, B.I., Hess, D.E., Welz, H.G., et al., 2000. Improved methodologies for breeding Striga-resistant sorghums. Field Crops Research. 66(3), 195-211. DOI: https://doi.org/10.1016/S0378-4290(00)00076-9 [26] Wolinska, J., King, K.C., 2009. Environment can alter selection in host-parasite interactions. Trends in Parasitology. 25(5), 236-244. DOI: https://doi.org/10.1016/j.pt.2009.02.004 [27] Lambers, H., Oliveira, R.S., 2019. Biotic influences: Parasitic associations. Plant physiological ecology. Springer, Cham.: Berlin. pp. 597-613. DOI: https://doi.org/10.1007/978-3-030-29639-1_15 [28] Fishman, M.R., Shirasu, K., 2021. How to resist parasitic plants: Pre-and post-attachment strategies. Current Opinion in Plant Biology. 62, 102004. DOI: https://doi.org/10.1016/j.pbi.2021.102004 [29] Lemoine, R., Camera, S.L., Atanassova, R., et al., 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science. 4, 272. DOI: https://doi.org/10.3389/fpls.2013.00272 [30] Begna, T., 2021. Effect of striga species on sorghum (Sorghum bicolor L. Moench) production and its integrated management approaches. International Journal of Research Studies in Agricultural Sciences. 7(7), 10-22. Available from: https://www.researchgate.net/profile/Temesgen-Begna/publication/357504776_ [31] Peter, G.A., Malcolm, C.P., Spencer-Phillips, P.T., 2017. Effects of pathogens and parasitic plants on source-sink relationships. Photoassimilate distribution in plants and crops. Routledge: Abingdon. pp. 479-500. [32] Suh, C., 2011. Evaluation of bioactivity of phytotoxins from pathogenic fungi of Orobanche sp. Available from: http://hdl.handle.net/10329/884 [33] Gaba, S., Perronne, R., Fried, G., et al., 2017. Response and effect traits of arable weeds in agro‐ecosystems: A review of current knowledge. Weed Research. 57(3), 123-147. DOI: https://doi.org/10.1111/wre.12245 [34] Qasem, J.R., 2019. Weed seed dormancy: The ecophysiology and survival strategies. Seed dormancy and germination. IntechOpen: London. [35] Botsheleng, B., Mathowa, T., Mojeremane, W., 2014. Effects of pre-treatments methods on the germination of pod mahogany (Afzelia quanzensis) and mukusi (Baikiaea plurijuga) seeds. Available from: http://researchhub.buan.ac.bw/handle/13049/255 [36] Bradford, K.J., 2017. Water relations in seed germination. Seed development and germination. Routledge: Abingdon. pp. 351-396. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203740071-13/ [37] Centre for Agriculture and Bioscience International, 2017. Invasive species Compendium Alectra Vogelii and Striga asiatica (witch weed). CAB International: Wallingford. Available from: https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2286518 [38] Mohler, C.L., Liebman, M., Staver, C.P., 2001. Weed life history: Identifying vulnerabilities. Ecological management of agricultural weeds. Cambridge University Press: Cambridge. pp. 40-98. [39] Fenner, M.W., 2012. Seed ecology. Springer Science & Business Media: Berlin. [40] Runyon, J.B., Tooker, J.F., Mescher, M.C., et al., 2009. Parasitic plants in agriculture: Chemical ecology of germination and host-plant location as targets for sustainable control: A review. Organic farming, pest control and remediation of soil pollutants. Springer: Berlin. pp. 123-136. DOI: https://doi.org/10.1007/978-1-4020-9654-9_8 [41] Matusova, R., van Mourik, T., Bouwmeester, H.J., 2004. Changes in the sensitivity of parasitic weed seeds to germination stimulants. Seed Science Research. 14(4), 335-344. DOI: https://doi.org/10.1079/SSR2004187 [42] Egley, G.H., 2017. Seed germination in soil: Dormancy cycles. Seed development and germination. Routledge: Abingdon. pp. 529-543. Available from: https://www.taylorfrancis.com/chapters/edit/10.1201/9780203740071-20 [43] Duc, G., Agrama, H., Bao, S., et al., (2015). Breeding annual grain legumes for sustainable agriculture: New methods to approach complex traits and target new cultivar ideotypes. Critical Reviews in Plant Sciences. 34(1-3), 381-411. DOI: https://doi.org/10.1080/07352689.2014.898469 [44] Yoshida, S., Cui, S., Ichihashi, Y., et al., 2016. The haustorium, a specialized invasive organ in parasitic plants. Annual Review of Plant Biology. 67(1), 643-667. Available from: https://www.researchgate.net/profile/Songkui-Cui/publication/301737323_ [45] Duke, S.O., Egley, G.H., 2018. Physiology of weed seed dormancy and germination. Weed physiology. CRC Press: Boca Raton. pp. 27-64. DOI: https://doi.org/10.1201/9781351077743 [46] Meimoun, P., Mordret, E., Langlade, N.B., et al., 2014. Is gene transcription involved in seed dry after-ripening?. PLoS One. 9(1), e86442. DOI: https://doi.org/10.1371/journal.pone.0086442 [47] Zagorchev, L., Stöggl, W., Teofanova, D., et al., 2021. Plant parasites under pressure: Effects of abiotic stress on the interactions between parasitic plants and their hosts. International Journal of Molecular Sciences. 22(14), 7418. DOI: https://doi.org/10.3390/ijms22147418 [48] Ueno, K., Furumoto, T., Umeda, S., et al., 2014. Heliolactone, a non-sesquiterpene lactone germination stimulant for root parasitic weeds from sunflower. Phytochemistry. 108, 122-128. DOI: https://doi.org/10.1016/j.phytochem.2014.09.018 [49] Phiri, C.K., Kabambe, V.H., Bokosi, J., et al., 2019. Screening of Alectra vogelii ecotypes on legume and non-legume crop species in Malawi. South African Journal of Plant and Soil. 36(2), 137-142. DOI: https://doi.org/10.1080/02571862.2018.1506830 [50] Rubiales, D., Fernández-Aparicio, M., 2012. Innovations in parasitic weeds management in legume crops. A review. Agronomy for Sustainable Development. 32(2), 433-449. DOI: https://doi.org/10.1007/s13593-011-0045-x [51] Macías, F.A., Mejías, F.J., Molinillo, J.M., 2019. Recent advances in allelopathy for weed control: From knowledge to applications. Pest Management Science. 75(9), 2413-2436. DOI: https://doi.org/10.1002/ps.5355 [52] A Lal, M., Kathpalia, R., Sisodia, R., et al., 2018. Biotic stress. Plant physiology, development and metabolism. Springer: Singapore. pp. 1029-1095. DOI: https://doi.org/10.1007/978-981-13-2023-1_32 [53] Agab, N.H.A., Superviser, M.A.E., 2021. Biological control of dodder (Cuscuta Sp) in Alfalfa Plant (Medicago sativa. L) [PhD thesis]. Khartoum: Sudan University of Science & Technology. Available from: http://repository.sustech.edu/handle/123456789/26553 [54] Vurro, M., Boari, A., Evidente, A., et al., 2009. Natural metabolites for parasitic weed management. Pest Management Science: Formerly Pesticide Science. 65(5), 566-571. DOI: https://doi.org/10.1002/ps.1742 [55] Press, M.C., Phoenix, G.K., 2005. Impacts of parasitic plants on natural communities. New Phytologist. 166(3), 737-751. DOI: https://doi.org/10.1111/j.1469-8137.2005.01358.x [56] Press, M.C., Graves, J.D., Stewart, G.R., 1990. Physiology of the interaction of angiosperm parasites and their higher plant hosts. Plant, Cell & Environment. 13(2), 91-104. DOI: https://doi.org/10.1111/j.1365-3040.1990.tb01281.x [57] Agrios, G.N., 2005. Plant pathology. Elsevier: Amsterdam. [58] Press, M.C., Graves, J.D., 1995. Parasitic plants. Chapman and Hall: London. [59] Brun, G., Braem, L., Thoiron, S., et al., 2018. Seed germination in parasitic plants: What insights can we expect from strigolactone research? Journal of Experimental Botany. 69(9), 2265-2280. DOI: https://doi.org/10.1093/jxb/erx472 [60] Baskin, C.C., Baskin, J.M., 2006. The natural history of soil seed banks of arable land. Weed Science. 54(3), 549-557. DOI: https://doi.org/10.1614/WS-05-034R.1 [61] Travlos, I., Gazoulis, I., Kanatas, P., et al., 2020. Key factors affecting weed seeds’ germination, weed emergence, and their possible role for the efficacy of false seedbed technique as weed management practice. Frontiers in Agronomy. 2, 1. DOI: https://doi.org/10.3389/fagro.2020.00001 [62] Rodenburg, J., Meinke, H., Johnson, D.E., 2011. Challenges for weed management in African rice systems in a changing climate. The Journal of Agricultural Science. 149(4), 427-435. DOI: https://doi.org/10.1017/S0021859611000207 [63] Altieri, M.A., Nicholls, C.I., Henao, A., et al., 2015. Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development. 35(3), 869-890. DOI: https://doi.org/10.1007/s13593-015-0285-2 [64] Salinger, M.J., Sivakumar, M.V.K., Motha, R., 2005. Reducing vulnerability of agriculture and forestry to climate variability and change: Workshop summary and recommendations. Increasing climate variability and change. Springer: Dordrecht. pp. 341-362. DOI: https://doi.org/10.1007/1-4020-4166-7_18 [65] Sindhu, S.S., Sehrawat, A., 2017. Rhizosphere microorganisms: Application of plant beneficial microbes in biological control of weeds. Microorganisms for green revolution. Springer: Singapore. pp. 391-430. DOI: https://doi.org/10.1007/978-981-10-6241-4_19 [66] Bir, M.S.H., Eom, M.Y., Uddin, M.R., et al., 2014. Weed population dynamics under climatic change. Weed & Turfgrass Science. 3(3), 174-182. DOI: https://doi.org/10.5660/WTS.2014.3.3.174 [67] Musselman, L.J., 1980. The biology of Striga, Orobanche, and other root-parasitic weeds. Annual Review of Phytopathology. 18(1), 463-489. DOI: https://doi.org/10.1146/annurev.py.18.090180.002335 [68] Vurro, M., Bonciani, B., Vannacci, G., 2010. Emerging infectious diseases of crop plants in developing countries: Impact on agriculture and socio-economic consequences. Food Security. 2(2), 113-132. DOI: https://doi.org/10.1007/s12571-010-0062-7 [69] Singh, B., 2020. Cowpea: The food legume of the 21st century (Vol. 164). John Wiley & Sons: New York. [70] Tippe, D.E., Rodenburg, J., Schut, M., et al., 2017. Farmers’ knowledge, use and preferences of parasitic weed management strategies in rain-fed rice production systems. Crop Protection. 99, 93-107. DOI: https://doi.org/10.1016/j.cropro.2017.05.007 [71] Masteling, R., Voorhoeve, L., IJsselmuiden, J., et al., 2020. DiSCount: Computer vision for automated quantification of Striga seed germination. Plant Methods. 16(1), 1-8. DOI: https://doi.org/10.1186/s13007-020-00602-8 [72] López‐Ráez, J.A., Matusova, R., Cardoso, C., et al., 2009. Strigolactones: Ecological significance and use as a target for parasitic plant control. Pest Management Science: Formerly Pesticide Science. 65(5), 471-477. DOI: https://doi.org/10.1002/ps.1692 [73] Goldwasser, Y., Rodenburg, J., 2013. Integrated agronomic management of parasitic weed seed banks. Parasitic orobanchaceae. Springer: Berlin. pp. 393-413. DOI: https://doi.org/10.1007/978-3-642-38146-1_22 [74] Samejima, H., Sugimoto, Y., 2018. Recent research progress in combatting root parasitic weeds. Biotechnology & Biotechnological Equipment. 32(2), 221-240. DOI: https://doi.org/10.1080/13102818.2017.1420427 [75] Hu, L., Wang, J., Yang, C., et al., 2020. The effect of virulence and resistance mechanisms on the interactions between parasitic plants and their hosts. International Journal of Molecular Sciences. 21(23), 9013. DOI: https://doi.org/10.3390/ijms21239013 [76] Těšitel, J., Mládek, J., Horník, J., et al., 2017. Suppressing competitive dominants and community restoration with native parasitic plants using the hemiparasitic Rhinanthus alectorolophus and the dominant grass Calamagrostis epigejos. Journal of Applied Ecology. 54(5), 1487-1495. DOI: https://doi.org/10.1111/1365-2664.12889 [77] El-Dabaa, M., Abo-Elwafa, G., Abd-El-Khair, H., 2022. Safe methods as alternative approaches to chemical herbicides for controlling parasitic weeds associated with nutritional crops: A review. Egyptian Journal of Chemistry. 65(4), 53-65. DOI: https://doi.org/10.21608/ejchem.2021.98930.4602 [78] van Bruggen, A.H., Gamliel, A., Finckh, M.R., 2016. Plant disease management in organic farming systems. Pest Management Science. 72(1), 30-44. DOI: https://doi.org/10.1002/ps.4145 [79] Vurro, M., Pérez‐de‐Luque, A., Eizenberg, H., 2017. Parasitic weeds. Weed research: Expanding horizons. John Wiley & Sons, Inc.: Hoboken. pp. 313-353. DOI: https://doi.org/10.1002/9781119380702.ch11 [80] Qasem, J.R., 2006. Parasitic weeds and allelopathy: From the hypothesis to the proofs. Allelopathy. Springer: Dordrecht. pp. 565-637. DOI: https://doi.org/10.1007/1-4020-4280-9_25 [81] Pérez-de-Luque, A., Lozano, M.D., Maldonado, A.M., et al., 2007. Medicago truncatula as a model for studying interactions between root parasitic plants and legumes. The Medicago Truncatula Handbook. 1-31. [82] Cardoso, C., Ruyter-Spira, C., Bouwmeester, H.J., 2011. Strigolactones and root infestation by plant-parasitic Striga, Orobanche and Phelipanche spp. Plant Science. 180(3), 414-420. DOI: https://doi.org/10.1016/j.plantsci.2010.11.007 [83] Hegenauer, V., Slaby, P., Körner, M., et al., 2020. The tomato receptor CuRe1 senses a cell wall protein to identify Cuscuta as a pathogen. Nature Communications. 11(1), 1-7. DOI: https://doi.org/10.1038/s41467-020-19147-4 [84] Vasta, G.R., 2009. Roles of galectins in infection. Nature Reviews Microbiology. 7(6), 424-438. DOI: https://doi.org/10.1038/nrmicro2146 [85] Stoddard, F.L., Nicholas, A.H., Rubiales, D., et al., 2010. Integrated pest management in faba bean. Field Crops Research. 115(3), 308-318. DOI: https://doi.org/10.1016/j.fcr.2009.07.002 [86] Bahadur, S., Verma, S.K., Prasad, S.K., et al., 2015. Eco-friendly weed management for sustainable crop production-A review. Journal Crop and Weed. 11(1), 181-189. Available from: https://www.researchgate.net/profile/Gaurav-Kanaujia/publication/312316705_ [87] Rubiales, D., Fernández‐Aparicio, M., Wegmann, K., et al., 2009. Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Research. 49, 23-33. DOI: https://doi.org/10.1111/j.1365-3180.2009.00742.x [88] Ministry of Agriculture and Food Security, 2004. Guide to agricultural production and natural resources management in Malawi. Ministry of Agriculture and Food Security: Lilongwe. [89] Emerton, L., Howard, G., 2008. A Toolkit for the Economic Analysis of Invasive Species [Internet]. Available from: https://portals.iucn.org/library/efiles/documents/2008-030.pdf [90] Conway, G., 2012. One billion hungry: Can we feed the world?. Cornell University Press: New York. [91] Mahaman, B.D., Passam, H.C., Sideridis, A.B., et al., 2003. DIARES-IPM: A diagnostic advisory rule-based expert system for integrated pest management in Solanaceous crop systems. Agricultural Systems. 76(3), 1119-1135. DOI: https://doi.org/10.1016/S0308-521X(02)00187-7 [92] Bond, W., Grundy, A.C., 2001. Non‐chemical weed management in organic farming systems. Weed Research. 41(5), 383-405. DOI: https://doi.org/10.1046/j.1365-3180.2001.00246.x [93] Chauhan, B.S., Matloob, A., Mahajan, G., et al., 2017. Emerging challenges and opportunities for education and research in weed science. Frontiers in Plant Science. 8, 1537. DOI: https://doi.org/10.3389/fpls.2017.01537 [94] Mueller, M.P., Zeidler, D.L., 2010. Moral–ethical character and science education: Ecojustice ethics through socioscientific issues (SSI). Cultural studies and environmentalism. Springer: Dordrecht. pp. 105-128. DOI: https://doi.org/10.1007/978-90-481-3929-3_8