Methane and Hydrogen Storage in Metal Organic Frameworks: A Mini Review
Source: By:Author(s)
DOI: https://doi.org/10.30564/jees.v2i2.2642
Abstract:The need for a net zero carbon emission future is imperative for environmental sustainability hence, intensive carbon fuels would need to be replaced with less carbon emitting energy sources such as natural gas till clean energy source such as hydrogen becomes commercialized. As a result, this mini review discusses the use of metal organic framework (MOF) for adsorption of methane and hydrogen in specially designed tanks for improved performance so as to increase their applicability. Herein, adsorption (delivery) capacity of selected high performing MOFs for methane and hydrogen storage were highlighted in reference to the targets set by United States Department of Energy’s Advanced Research Projects Agency-Energy (ARPA-E) and Fuel Cells Technology Office. In this regard, specific design and chemistry of MOFs for improved methane and hydrogen adsorption were highlighted accordingly. In addition, an overview of computational and molecular studies of hypothetical MOFs was done - the various approaches used and their proficiency for construction of specific of crystalline structures and topologies were herewith discussed.
References:[1] A. Dechezleprêtre, M. Glachant, I. Haščič, N. Johnstone, Y. Ménière. Invention and transfer of climate change-mitigation technologies: A global analysis. Rev. Environ. Econ. Policy, 2011, 5: 109-130. DOI: https://doi.org/10.1093/reep/req023 [2] F. Joos, R. Spahni. Rates of change in natural and anthropogenic radiative forcing over the past 20, 000 years. PNAS, 2008, 105: 1425-1430. [3] National Oceanic and Atmospheric Administration, Monthly Average Mauna Loa CO2, 2020. https://www.esrl.noaa.gov/gmd/ccgg/trends/ [4] A. Schoedel, Z. Ji, O.M. Yaghi. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat. Energy, 2016, 1: 1-13. DOI: https://doi.org/10.1038/nenergy.2016.34 [5] The NEED Project, Natural Gas, 2018. https://www.need.org/Files/curriculum/infobook/NGasS.pdf [6] L. Arnold, G. Averlant, S. Marx, M. Weickert, U. Müller, J. Mertel, C. Horch, M. Peksa, F. Stallmach. Metal organic frameworks for natural gas storage in vehicles. Chemie-Ingenieur-Technik, 2013, 85: 1726- 1733. DOI: https://doi.org/10.1002/cite.201300093 [7] Y. He, W. Zhou, G. Qian, B. Chen. Methane storage in metal-organic frameworks. Chem. Soc. Rev., 2014, 43: 5657-5678. DOI: https://doi.org/10.1039/c4cs00032c [8] M.P. Suh, H.J. Park, T.K. Prasad, D.W. Lim. Hydrogen storage in metal-organic frameworks. Chem. Rev., 2012, 112: 782-835. DOI: https://doi.org/10.1021/cr200274s [9] Office of Energy Efficiency & Renewable Energy, Hydrogen Storage - Basics, Hydrog. Fuel Cell Technol. Off, 2020. https://www.energy.gov/eere/fuelcells/hydrogen-storage-basics-0 (accessed November 27, 2020). [10] A. Yamashita, M. Kondo, S. Goto, N. Ogami. Development of High-Pressure Hydrogen Storage System for the Toyota “Mirai,” SAE Tech. Pap. Ser. 1, 2015. DOI: https://doi.org/10.4271/2015-01-1169 [11] L.N.G. Plant, R.T. Operations, LNG Plant and Regasification Terminal Operations. Handb. Liq. Nat. Gas, 2014: 297-320. DOI: https://doi.org/10.1016/B978-0-12-404585-9.00007-6 [12] S.S. Ikiensikimama, LNG Liquefaction Systems Comparison [Powerpoint Presentation], 2019. [13] M.I. Khan, T. Yasmin, A. Shakoor. Technical overview of compressed natural gas (CNG) as a transportation fuel, Renew. Sustain. Energy Rev., 2015, 51: 785-797. DOI: https://doi.org/10.1016/j.rser.2015.06.053 [14] Peiyang Chemical Eng. Co., CNG Plant, 2020. https://www.peiyangchem.com/modular-gas-processing/cng-plant.html (accessed November 30, 2020). [15] S. Alhasan, R. Carriveau, D.S.K. Ting. A review of adsorbed natural gas storage technologies, Int. J. Environ. Stud. 2016, 73: 343-356. DOI: https://doi.org/10.1080/00207233.2016.1165476 [16] A. Demirbas. Methane Gas Hydrate: as a Natural Gas Source, Springer, 2010. DOI: https://doi.org/10.1007/978-1-84882-872-8_4 [17] A.M. Gambelli, F. Rossi. Natural gas hydrates: Comparison between two different applications of thermal stimulation for performing CO2 replacement. Energy, 2019, 172: 423-434. DOI: https://doi.org/10.1016/j.energy.2019.01.141 [18] W.P. Dillon. Gas Hydrate in the Ocean Environment. Encycl. Phys. Sci. Technol., 2002, 473-486. DOI: https://doi.org/10.1016/b0-12-227410-5/00276-3 [19] L.L. Vasiliev, L.E. Kanonchik, D.A. Mishkinis, M.I. Rabetsky. Adsorbed natural gas storage and transportation vessels, Int. J. Therm. Sci., 2000, 39: 1047- 1055. DOI: https://doi.org/10.1016/S1290-0729(00)01178-9 [20] E. Musin. Adsorption Modelling, Mikelli University of Applied Sciences, 2013. [21] N. Bagheri, J. Abedi. Adsorption of methane on corn cobs based activated carbon. Chem. Eng. Res. Des., 2011, 89: 2038-2043. DOI: https://doi.org/10.1016/j.cherd.2011.02.002 [22] R.L. Martin, C.M. Simon, B. Smit, M. Haranczyk. In silico design of porous polymer networks: High-throughput screening for methane storage materials. J. Am. Chem. Soc., 2014, 136: 5006-5022. DOI: https://doi.org/10.1021/ja4123939 [23] Y. Lin, C. Kong, Q. Zhang, L. Chen. Metal-Organic Frameworks for Carbon Dioxide Capture and Methane Storage. Adv. Energy Mater, 2017, 7. DOI: https://doi.org/10.1002/aenm.201601296 [24] Y.H. Zhang, Z.C. Jia, Z.M. Yuan, T. Yang, Y. Qi, D.L. Zhao. Development and Application of Hydrogen Storage. J. Iron Steel Res. Int., 2015, 22: 757-770. DOI: https://doi.org/10.1016/S1006-706X(15)30069-8 [25] Y. Li, R.T. Yang. Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc., 2006, 128: 726-727. DOI: https://doi.org/10.1021/ja056831s [26] S. Niaz, T. Manzoor, A.H. Pandith. Hydrogen storage: Materials, methods and perspectives. Renew. Sustain. Energy Rev., 2015, 50: 457-469. DOI: https://doi.org/10.1016/j.rser.2015.05.011 [27] U. Eberle, M. Felderhoff, F. Schüth. Chemical and physical solutions for hydrogen storage, Angew. Chemie - Int. Ed. 2009, 48: 6608-6630. DOI: https://doi.org/10.1002/anie.200806293 [28] N. V. Belkova, L.M. Epstein, O.A. Filippov, E.S. Shubina. Hydrogen and Dihydrogen Bonds in the Reactions of Metal Hydrides. Chem. Rev., 2016, 116: 8545-8587. DOI: https://doi.org/10.1021/acs.chemrev.6b00091 [29] G. Principi, F. Agresti, A. Maddalena, S. Lo Russo.The problem of solid state hydrogen storage. Energy, 2009, 34: 2087-2091. DOI: https://doi.org/10.1016/j.energy.2008.08.027 [30] R. Schulz, J. Huot, G.X. Liang, S. Boily, A. Van Neste. Structure and Hydrogen Sorption Properties of Ball Milled Mg Dihydride. J. Metastable Nanocrystalline Mater, 1999, 2-6: 615-622. DOI: https://doi.org/10.4028/www.scientific.net/jmnm.2-6.615 [31] E. Klontzas, E. Tylianakis, G.E. Froudakis. On the enhancement of molecular hydrogen interactions in nanoporous solids for improved hydrogen storage. J. Phys. Chem. Lett., 2011, 2: 1824-1830. DOI: https://doi.org/10.1021/jz2005368 [32] J. Li, Y. Ma, M.C. Mccarthy, J. Sculley, J. Yu, H. Jeong, P.B. Balbuena, H. Zhou. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coord. Chem. Rev., 2011, 255: 1791-1823. DOI: https://doi.org/10.1016/j.ccr.2011.02.012 [33] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi. The chemistry and applications of metal-organic frameworks. Science (80-. ), 2013, 341. DOI: https://doi.org/10.1126/science.1230444 [34] D. Lozano-Castelló, J. Alcañiz-Monge, M.A. De La Casa-Lillo, D. Cazorla-Amorós, A. Linares-Solano. Advances in the study of methane storage in porous carbonaceous materials. Fuel, 2002, 81: 1777-1803. DOI: https://doi.org/10.1016/S0016-2361(02)00124-2 [35] V.C. Menon, S. Komarneni. Porous Adsorbents for Vehicular Natural Gas Storage: A Review. J. Porous Mater, 1998, 5: 43-58. [36] Y. Peng, V. Krungleviciute, I. Eryazici, J.T. Hupp, O.K. Farha, T. Yildirim. Methane storage in metal-organic frameworks: Current records, surprise findings, and challenges. J. Am. Chem. Soc., 2013, 135: 11887-11894. DOI: https://doi.org/10.1021/ja4045289 [37] R. Balderas-Xicohténcatl, M. Schlichtenmayer, M. Hirscher. Volumetric Hydrogen Storage Capacity in Metal-Organic Frameworks. Energy Technol., 2018, 6: 578-582. DOI: https://doi.org/10.1002/ente.201700636 [38] V.R. Bakuru, M.E. DMello, S.B. Kalidindi. Metal-Organic Frameworks for Hydrogen Energy Applications: Advances and Challenges. Chem Phys Chem, 2019, 20: 1177-1215. DOI: https://doi.org/10.1002/cphc.201801147 [39] J.D. Evans, C.J. Sumby, C.J. Doonan. Post-synthetic metalation of metal-organic frameworks, Chem Soc Rev., 2014: 5933-5951. DOI: https://doi.org/10.1039/c4cs00076e [40] I. Senkovska, S. Kaskel. High pressure methane adsorption in the metal-organic frameworks Cu3(btc)2, Zn2(bdc)2dabco, and Cr3F(H2O)2O(bdc)3. Microporous Mesoporous Mater, 2008, 112:108-115. DOI: https://doi.org/10.1016/j.micromeso.2007.09.016 [41] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi. Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage. Science (80-.), 2002, 5554: 469-472. DOI: https://doi.org/10.1126/science.1067208 [42] P. Rallapalli, K.P. Prasanth, D. Patil, R.S. Somani, R. V. Jasra, H.C. Bajaj. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)], J. Porous Mater. 2011 18: 205-210. DOI: https://doi.org/10.1007/s10934-010-9371-7 [43] ARPA-E, MOVE Program Overview, 2012. https://arpa-e.energy.gov/sites/default/files/documents/files/MOVE_ProgramOverview.pdf [44] Office of Energy Efficiency & Renewable Energy. Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles, Hydrog. Fuel Cell Technol. Off, 2020. https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles (accessed November 27, 2020). [45] X.-S. Wang, S. Ma, P.M. Forster, D. Yuan, J. Eckert, J.J. López, B.J. Murphy, J.B. Parise, H.-C. Zhou. Enhancing H2 Uptake by “Close-Packing” Alignment of Open Copper Sites in Metal-Organic Frameworks, Angew. Chemie, 2008, 120: 7373-7376. DOI: https://doi.org/10.1002/ange.200802087 [46] J.A. Mason, M. Veenstra, J.R. Long. Evaluating metal-organic frameworks for natural gas storage. Chem, Sci., 2014, 5: 32-51. DOI: https://doi.org/10.1039/c3sc52633j [47] C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr. Large-scale screening of hypothetical metal-organic frameworks. Nat. Chem., 2012, 4: 83-89. DOI: https://doi.org/10.1038/nchem.1192 [48] F. Gándara, H. Furukawa, S. Lee, O.M. Yaghi. High Methane Storage Capacity in Aluminum Metal-Organic Frameworks. J. Am. Chem. Soc., 2014, 136: 5271-5274. DOI: https://doi.org/10.1021/ja501606h [49] D.A. Gómez-Gualdrón, C.E. Wilmer, O.K. Farha, J.T. Hupp, R.Q. Snurr. Exploring the limits of methane storage and delivery in nanoporous materials. J. Phys. Chem. C, 2014, 118: 6941-6951. DOI: https://doi.org/10.1021/jp502359q [50] D. Alezi, Y. Belmabkhout, M. Suyetin, P.M. Bhatt, L.J. Weseliński, V. Solovyeva, K. Adil, I. Spanopoulos, P.N. Trikalitis, A.H. Emwas, M. Eddaoudi. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-Based soc -MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc., 2015, 137: 13308-13318. DOI: https://doi.org/10.1021/jacs.5b07053 [51] G. Chang, B. Li, H. Wang, Z. Bao, T. Yildirim, Z. Yao, S. Xiang, W. Zhou, B. Chen. A microporous metal-organic framework with polarized trifluoromethyl groups for high methane storage. Chem. Commun. 2015, 51: 14789-14792. DOI: https://doi.org/10.1039/c5cc05850c [52] H. Li, K. Wang, Y. Sun, C.T. Lollar, J. Li, H.C. Zhou. Recent advances in gas storage and separation using metal-organic frameworks, Mater. Today. 2018, 21: 108-121. DOI: https://doi.org/10.1016/j.mattod.2017.07.006 [53] P. García-Holley, B. Schweitzer, T. Islamoglu, Y. Liu, L. Lin, S. Rodriguez, M.H. Weston, J.T. Hupp, D.A. Gómez-Gualdrón, T. Yildirim, O.K. Farha. Benchmark Study of Hydrogen Storage in Metal-Organic Frameworks under Temperature and Pressure Swing Conditions. ACS Energy Lett., 2018, 3: 748-754. DOI: https://doi.org/10.1021/acsenergylett.8b00154 [54] D.A. Gómez-Gualdrón, Y.J. Colón, X. Zhang, T.C. Wang, Y.S. Chen, J.T. Hupp, T. Yildirim, O.K. Farha, J. Zhang, R.Q. Snurr. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci., 2016. DOI: https://doi.org/10.1039/C6EE02104B [55] G. Ricchiardi, J.G. Vitillo, D. Cocina, E.N. Gribov, A. Zecchina. Direct observation and modelling of ordered hydrogen adsorption and catalyzed ortho-para conversion on ETS-10 titanosilicate material. Phys. Chem. Chem. Phys., 2007, 9: 2753-2760. DOI: https://doi.org/10.1039/b703409a [56] J.L.C. Rowsell, O.M. Yaghi. Strategies for hydrogen storage in metal-organic frameworks, Angew. Chemie Int. Ed., 2005, 44: 4670-4679. DOI: https://doi.org/10.1002/anie.200462786 [57] D.P. Broom, C.J. Webb, G.S. Fanourgakis, G.E. Froudakis, P.N. Trikalitis, M. Hirscher. Concepts for improving hydrogen storage in nanoporous materials. Int. J. Hydrogen Energy, 2019, 44: 7768-7779. DOI: https://doi.org/10.1016/j.ijhydene.2019.01.224 [58] A. Ahmed, S. Seth, J. Purewal, A.G. Wong-Foy, M. Veenstra, A.J. Matzger, D.J. Siegel. Exceptional hydrogen storage achieved by screening nearly half a million metal-organic frameworks. Nat. Commun., 2019, 10. DOI: https://doi.org/10.1038/s41467-019-09365-w [59] B.J. Sikora, R. Winnegar, D.M. Proserpio, R.Q. Snurr. Textural properties of a large collection of computationally constructed MOFs and zeolites. Microporous Mesoporous Mater, 2014, 186: 207-213. DOI: https://doi.org/10.1016/j.micromeso.2013.11.041