Mitochondrial Haplotypes suggest Genetic Component for Habitat Preference in Blue Crabs
Source: By:Daniel Rittschof
DOI: https://doi.org/10.30564/jfsr.v2i2.2438
Abstract:Atlantic blue crabs (Callinectes sapidus) are ecologically and commercially fundamental. Life stages are punctuated with migration. Adults and juveniles live in estuaries and sounds. Larval stages develop in the coastal ocean. Juvenile and adult crabs occupy habitats from high salinities to fresh water. We determined whether maturing juvenile and adult blue crab habitat use is reflected in mitochondrial cytochrome oxidase 1 haplotypes. High salinity crabs had lower haplotype diversity (0.7260 ± .03900) compared to spawning crabs (0.9841 ± .00021) and low salinity crabs (0.94154 ± .00118). Significant pairwise differences in haplotypes were found between high salinity and spawning crabs (Nm = 0.26018, p < 0.001), and between high salinity and low salinity crabs (Nm = 0.19482, p < 0.001) indicating a lack of gene flow. Crabs from high salinity had highly significant genetic differentiation compared to spawning crabs (Fst = 0.11830, p < 0.001) and low salinity crabs (Fst = 0.09689, p < 0.001). Results support the hypothesis that genetics influence habitat selection. Crab larvae mix in the coastal ocean but occupy specific habitats upon return to sounds and estuaries. These findings have implications for the management of fisheries.
References:[1]Aguilar, R., Johnson, E.G., Hines, A.H., Kramer, M.A., Goodison, M.R. Importance of blue crab life history for stock enhancement and spatial management of the fishery in Chesapeake Bay[J]. Reviews in Fisheries Science, 2008, 16(1):117 -124. DOI: 10.1080/10641260701681599 [2]Rittschof, D. Migration and reproductive potential of mature female blue crabs report on blue crab biology Grant 02-Biol-04[R]. Revision July 23, 2004 [3]Carr, S.D., Tankersley, R.A., Hench, J.L., Forward Jr., R.B., Luettich Jr., R.A. Movement patterns and trajectories of ovigerous blue crabs Callinectes sapidus during the spawning migration[J]. Estuarine, Coastal, and Shelf Science, 2004, 60(4): 567-579. DOI: 10.1016/j.ecss.2004.02.012 [4] Hench, J. L., R. B. Forward, S. D. Carr, D. Rittschof, R. A. Luettich. Testing a selective tidal-stream transport model: Observations of female blue crab (Callinectes sapidus) vertical migration during the spawning season[J]. Limnology and Oceanography, 2004, 49(5): 1857-1870. DOI: 10.4319/lo.2004.49.5.1857 [5] Aguilar, R., Hines, A.H., Wolcott, T.G., Wolcott, D.L., Kramer, M.A., Lipcius, R.N. The timing and route of movement and migration of post-copulatory female blue crabs, Callinectes sapidus Rathbun, from the upper Chesapeake Bay[J]. Journal of Experimental Marine Biology and Ecology, 2005, 319(1): 117 -128. DOI: 10.1016/j.jembe.2004.08.030 [6] Turner, H.V., Wolcott, D.L., Wolcott, T.G., Hines, A.H. Post-mating behavior, intramolt growth, and onset of migration to Chesapeake Bay spawning grounds by adult female blue crabs, Callinectes sapidus Rathbun[J]. Journal of Experimental Marine Biology and Ecology, 2002, 295(1): 107-130. DOI: 10.1016/S0022-0981(03)00290-9 [7] Dickinson, G.H., Rittschof, D., Latanich, C. Spawning biology of the blue crab, Callinectes sapidus, in North Carolina[J]. Bulletin of Marine Science, 2006, 79(2): 273-285. [8] Darnell, M.Z., Rittschof, D., Darnell, K.M., McDowell, R.E. Lifetime reproductive potential of female blue crabs, Callinectes sapidus, in North Carolina USA[J]. Marine Ecology Progress Series, 2009, 394: 153-163. DOI: 10.3354/meps08295 [9] Provenzano, A.J., McConaugha, J.R., Philips, K., Johnson, D.F., Clark, J. Vertical distribution of first stage larvae of the blue crab, Callinectes sapidus, at the mouth of Chesapeake Bay[J]. Estuarine Coastal and Shelf Science, 1983, 16(5): 489-500. DOI: 10.1016/0272-7714(83)90081-1 [10] Forward, R.B., Frankel Jr., D.A.Z., Rittschof, D. Molting of megalopae from the blue crab Callinectes sapidus: Effects of offshore and estuarine cues[J]. Marine Ecology Progress Series, 1994, 113(1-2): 55- 59. DOI: 10.3354/meps113055 [11] Forward Jr., R.B., DeVries, M.C., Rittschof, D., Frankel, D.A.Z., Bischoff, J.P., Fisher, C.M., Welch, J.M. Effects of environmental cues on metamorphosis of the blue crab Callinectes sapidus[J]. Marine Ecology Press Series, 1996, 131(1-3): 165-177. DOI: 10.3354/meps131165 [12] Ziegler, T.A. Larval release behaviors in ovigerous blue crabs Callinectes sapidus[D]. Master’s Thesis: Florida Institution of Technology, Melbourne, FL. 2002. [13] Costlow, J.D., Bookhout, C.G. The larval development of Callinectes sapidus Rathbun reared in the laboratory[J]. Biological Bulletin, 1959, 16(3): 373- 396. DOI: 10.2307/1538947 [14] Welch, J.M., Rittschof, D., Bullock, T.M., Forward Jr., R.B. Effects of chemical cues on settlement behavior of blue crab Callinectes sapidus postlarvae[J]. Marine Ecology Progress Series, 1997, 154: 143-153. DOI: 10.3354/meps154143 [15] Tankersley, R.A., Wieber, M.G., Sigala, M.A., Kachurak, K.A. Migratory behavior of ovigerous blue crabs Callinectes sapidus: Evidence for selective tidal-stream transport[J]. Biological Bulletin, 1998, 195(2): 168-173. DOI: 10.2307/1542824 [16] Ogburn, M.B. Estuarine ingress of the blue crab Callinectes sapidus[D]. Ph.D. Dissertation: Duke University, 123: 2008. [17] Wolcott, T.G., DeVries, M.C. Observations of wind-induced subtidal variability in the Delaware Estuary[J]. Journal of Geophysical Research, 1994, 89(C6): 10,589-10, 597. DOI: 10.1029/JC089iC06p10589 [18] Brumbaugh, R.D., McConaugha Jr., J.R. Time to metamorphosis of blue crab Callinectes sapidus megalopae: effects of benthic macroalgae[J]. Marine Ecology Progress Series, 1995, 129: 113-118. DOI: 10.3354/meps129113 [19] Tankersley, R.A., McKelvey, L.M., Forward Jr., R.B. Responses of estuarine crab megalopae to pressure, salinity and light - Implications for flood tide transport[J]. Marine Biology, 1995, 122: 391-400. DOI: 10.1007/BF00350871 [20] Rowe, P.M., Epifanio, C.E. Flux and transport of weakfish larvae in Delaware Bay, USA[J]. Marine Ecology Progress Series, 1994a, 110(2-3): 115-120. http://www.jstor.org/stable/24847580 [21] Rowe, P.M., Epifanio, C.E. Tidal stream transport of weakfish in Delaware Bay, USA[J]. Marine Ecology Progress Series, 1994b, 110: 105-114. DOI: 10.3354/MEPS110105 [22] Posey, M.H., Alphin, T.D., Harwell, H., Allen, B. Importance of low salinity areas for juvenile blue crabs, Callinectes sapidus Rathbun, in river-dominated estuaries of southeastern United States[J]. Journal of Experimental Marine Biology and Ecology, 2005, 319(1): 81-100. DOI: 10.1016/j.jembe.2004.04.021 [23] Darnell, M.Z., Kemberling, A.K. Large-scale movements of postcopulatory female blue crabs Callinectes sapidus[J]. Transactions of the American Fisheries Society, 2018, 147(4): 716 -728. DOI: 10.1002/tafs.10058 [24] Ramach, S., Darnell, M.Z., Avissar, N., Rittschof, D. Habitat use and population dynamics of blue crabs, Callinectes sapidus, in a high salinity embayment[J]. Journal of Shellfish Research, 2009, 28(3): 636-640. DOI: 10.2983/035.028.0328 [25] Rinaldi JC, Hench J, Darnell MZ, Kukurugya M, Rittschof D. Life stage, gender, and movement of blue crabs (Callinectes sapidus) in Lake Mattamuskeet and connecting canals[J]. Journal of Fisheries Science, 2019, 1(2): 7-19. DOI: 10.30564/jfsr.v1i2.1095 [26] Feng, X., Williams, E.P., Place, A.R. High genetic diversity and implications for determining population structure in the blue crab Callinectes sapidus[J]. Journal of Shellfish Research, 2017, 36(1): 231-242. DOI: 10.2983/035.036.0126 [27] Williams, E.P., Feng, X., Place, A.R. Extensive heteroplasmy and evidence for fragmentation in the Callinectes sapidus mitochondrial genome[J]. Journal of Shellfish Research, 2017, 36(1): 263-272. DOI:10.2983/035.036.0129 [28] Wilson, A.C., Cann, R.L., Carr, S.M., George, M., Gyllensten, U.B., Helm-Bychowski, K.M., Higuchi, R.G., Palumbi, S.R., Prager, E.M., Sage, R.D., Stoneking, M. Mitochondrial DNA and two perspectives on evolutionary genetics[J]. Biological Journal of Linnean Society, 1985, 26(4): 375-400. DOI: 10.1111/j.1095-8312.1985.tb02048.x [29] Darden, R.L. Population genetics of the blue crab in the Gulf of Mexico[D]. Dissertation Archive: The University of Southern Mississippi, 2004. [30] McMillen-Jackson, A.L., Bert, T.M. Mitochondrial DNA variation and population genetic structure of the blue crab Callinectes sapidus in the eastern United States[J]. Marine Biology, 2004, 145(4): 769-777. DOI: 10.1007/s00227-004-1353-3 [31] Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792-1797. DOI: 10.1093/nar/gkh340 [32] Librado P, Rozas L. DnaSP V5: A software for comprehensive analysis of DNA polymorphism data[J]. Bioinformatics, 2009, 25(11): 1451-1452. DOI: 10.1093/bioinformatics/btp187 [33] Excoffier, L., Lisher, H.E. Arlequin Suite Ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows[J]. Molecular Ecology Resources, 2010, 10(3): 564-567. DOI: 10.1111/j.1755-0998.2010.02847.x [34] Weir, B.S., Cockerham, C.C. Estimating F-statistics for the analysis of population structure. [J] Evolution, 1984, 38(6): 1358-1370. DOI: 10.2307/2408641 [35] Leigh, J.W., Bryant, D. POPART: Full-feature software for haplotype network construction. [J] Methods in Ecology and Evolution, 2015, 6(9): 1110- 1116. DOI: 10.1111/2041-210X.12410 [36] Gompert, Z., Forister, M.L., Fordyce, J.A., Nice, C.C., Williamson, R.J., Buerkle, C.A. Bayesian analysis of molecular variance in pyrosequences quantifies population genetic structure across the genome of Lycaeides butterflies[J]. Molecular Ecology, 2010, 19(12): 2455-2473. [37] Tan, E-C., Van Engle, W.A. Osmoregulation in the adult blue crab[J]. Chesapeake Science, 1966, 7(1): 30-35. DOI: 10.2307/1350986 [38] King, L.E., Ding, Q., Prestwich, G.D., Tobe, S.S. The characterization of a haemolymph methyl farnesoate binding protein and the assessment of methyl farnesoate metabolism by the haemolymph and other tissues from Procambarus clarkia[J]. Insect Biochemistry and Molecular Biology, 1995, 25(2): 495-501. DOI: 10.1006/gcen.1996.6815 [39] Findley, A.M., Belisle, B.W., Stickle, W.B. Effects of salinity fluctuations on the respiration rate of the southern oyster drill Thais haemastoma and the blue crab Callinectes sapidus[J]. Marine Biology, 1978, 49:59-67. DOI: 10.1016/0022-0981(79)90135-7 [40] Cushman E, Darden T. Genetic characterization of Atlantic blue crab (Callinectes sapidus) in Charleston Harbor, South Carolina[J]. Journal of Shellfish Research, 2017, 36(1): 243-247. DOI: 10.2983/035.036.0127 [41] Hines, A.H., Jivoff, P.R., Bushmann, P.J., van Montfrans, J. Reed, S.A. Wolcott, D.L. Wolcott, T.G. Evidence for sperm limitation in the blue crab, Callinectes sapidus[J]. Bulletin of Marine Science, 2003, 72(2): 287 -310. https://scholarworks.wm.edu/vimsarticles/1521 [42] National Fisherman. Big changes for North Carolina's blue crab management. SeafoodSource, 2019. https://www.seafoodsource.com/national-fisherman/ big-changes-for-north-carolina-blue-crab-management [43] Ogburn, M.B., Roberts, P.M., Richie, K.D., Johnson, E.G., Hines, A.H. Temporal and spatial variation in sperm stores in mature female blue crabs Callinectes sapidus and potential effects on brood production in Chesapeake Bay[J]. Marine Ecology Progress Series, 2014, 507: 249 -262. DOI: 10.3354/meps10869 [44] Medici, D.A., Wolcott, T.G., Wolcott, D.L. Scale-dependent movements and protection of female blue crabs (Callinectes sapidus)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2006, 63(4): 858- 871. DOI: 10.1139/f05-263 [45] Rittschof, D., Darnell, M.Z., Darnell, K.M., Golden, M., Ogburn, M.B., McDowell, R.E. Estimating relative abundance of the female blue crab spawning stock in North Carolina[J]. Biology and Management of Exploited Crab Populations Under Climate Change. G. H. Kruse, G. L. Eckert, R. J. Foy et al. Fairbanks, Alaska Sea Grant College Program, University of Alaska, 2010, 91-108. DOI: 10.4027/bmecpcc.2010.21