Effect of Precipitation Characteristics on Spatial and Temporal Variations of Landslide in Kermanshah Province in Iran
Source: By:Safieh Javadinejad, Rebwar Dara, Forough Jafary
DOI: https://doi.org/10.30564/jgr.v2i4.1818
Abstract:[1] Alcántara-Ayala, I., Sassa, K., Mikoš, M., Han, Q., Rhyner, J., Takara, K., Nishikawa, S., Rouhban, B., Briceño, S.. The 4th world landslide forum: landslide research and risk reduction for advancing the culture of living with natural hazards. International Journal of Disaster Risk Science, 2017, 8(4): 498-502.DOI: https://link.springer.com/article/10.1007/s13753-017-0139-4 [2] Bordoni, M., Meisina, C., Valentino, R., Lu, N., Bittelli, M., Chersich, S.. Hydrological factors affecting rainfall-induced shallow landslides: from the field monitoring to a simplified slope stability analysis. Engineering Geology, 2015, 193: 19-37.DOI: https://www.sciencedirect.com/science/article/pii/S0013795215001222 [3] Ciabatta, L., Massari, C., Brocca, L., Salciarini, D., Moramarco, T., Wagner, W., Tamagnini, C., April. A satellite-based distributed model for landslide risk assessment. In EGU General Assembly Conference Abstracts, 2018, 20: 8676.DOI: http://adsabs.harvard.edu/abs/2018EGUGA..20.8676C [4] Hashemian, A.H., Rezaei, M., Kashefi, H., Pirsaheb, M., Kharajpour, H.. Trend step changes of seasonal and annual precipitation over Kermanshah during a 60-year period using non-parametric methods. Bioscience Biotechnology Research Communications, 2017, 10(4): 662-671.DOI: http://bbrc.in/bbrc/2018Oct%20-%20DecPDF/BBRC17_008.pdf [5] Hong, H., Kornejady, A., Soltani, A., Termeh, S.V.R., Liu, J., Zhu, A.X., Ahmad, B.B., Wang, Y.. Landslide susceptibility assessment in the Anfu County, China: comparing different statistical and probabilistic models considering the new topo-hydrological factor (HAND). Earth Science Informatics, 2018, 11(4): 605-622.DOI: https://link.springer.com/article/10.1007/s12145-018-0352-8 [6] Huang, F.M., Wu, P., Ziggah, Y.Y.. GPS monitoring landslide deformation signal processing using time-series model. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2016, 9(3): 321-332. https://www.researchgate.net/profile/Yao_Yevenyo_Ziggah/publication/299604868_GPS_Monitoring_Landslide_Deformation_Signal_Processing_using_Time_series_Model/links/5702a7aa08aea09bb1a3014b.pdf [7] Krkač, M., Špoljarić, D., Bernat, S., Arbanas, S.M.. Method for prediction of landslide movements based on random forests. Landslides, 2017, 14(3): 947-960.DOI: https://link.springer.com/article/10.1007/s10346-016-0761-z [8] Lin, M.L., Wu, Y.T., Wang, K.L., Hsieh, Y.M.. Monitoring of the Deep-seated Landslide using MEMS-a Case Study of Lantai Landslide, Taiwan. In EGU General Assembly Conference Abstracts, 2018, 20: 12531.DOI: http://adsabs.harvard.edu/abs/2018EGUGA..2012531L [9] Melillo, M., Brunetti, M.T., Peruccacci, S., Gariano, S.L., Guzzetti, F.. Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides, 2016, 13(1): 165-172.DOI: https://link.springer.com/article/10.1007/s10346-015-0630-1 [10] Pham, B.T., Bui, D.T., Pham, H.V., Le, H.Q., Prakash, I., Dholakia, M.B.. Landslide hazard assessment using random subspace fuzzy rules based classifier ensemble and probability analysis of rainfall data: a case study at Mu Cang Chai District, Yen Bai Province (Viet Nam). Journal of the Indian Society of Remote Sensing, 2017, 45(4): 673-683.DOI: https://link.springer.com/article/10.1007/s12524-016-0620-3 [11] Rossi, M., Luciani, S., Valigi, D., Kirschbaum, D., Brunetti, M.T., Peruccacci, S., Guzzetti, F.. Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology, 2017, 285: 16-27.DOI: https://www.sciencedirect.com/science/article/pii/S0169555X17300855 [12] Setiawan, H., Sassa, K., Takara, K., Miyagi, T., Fukuoka, H.. Initial pore pressure ratio in the earthquake triggered large-scale landslide near Aratozawa Dam in Miyagi Prefecture, Japan. Procedia Earth and Planetary Science, 2016, 16: 61-70.DOI: https://www.sciencedirect.com/science/article/pii/S1878522016300078 [13] Skofronick-Jackson, G., Huffman, G., Stocker, E., Petersen, W.. Successes with the Global Precipitation Measurement (GPM) Mission. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, 2016: 3910-3912.DOI: https://ieeexplore.ieee.org/abstract/document/7730015/ [14] W. Yang, L. Shen, P. Shi. Mapping landslide risk of the world. In World Atlas of Natural Disaster Risk (pp. 57-66). Springer, Berlin, Heidelberg, 2015.DOI: https://link.springer.com/chap-ter/10.1007/978-3-662-45430-5_4