Road Network Analysis with GIS and GRASS-GIS: A Probabilistic Approach
Source: By:Giuseppe Caristi, Roberto Guarneri, Sabrin Lo Bosco
DOI: https://doi.org/10.30564/jgr.v4i4.3759
Abstract:In this paper we show how it can be useful to the probability of intersections in the determination of a classification rule for raster conversions in Geographical Information System (GIS) and GRASS GIS for the Road Network Analysis (RNA). We use a geometric probabilities approach for irregular path considering these results for transportation planning operations. We study two particular problems with irregular tessellations, in order to have a situation more realistic respect to map GIS and considering also the maximum value of probability to narrow the range of possible probability values.
References:[1] D. Barilla, G. Caristi, A. Puglisi, 2014, A Buffon-Laplace type problems for an irregular lattice with maximum probability, Applied Mathematical Sciences,vol. 8, no. 165, pp. 8287-8293. [2] V. Bonanzinga and L. Sorrenti, 2008, Geometric Probabilities for three-dimensional tessellations and raster classifications, Serie on Advances in mathematics for Applied Sciences, vol. 82, pp.111-122. [3] B. Boots, 1998, Spatial tessellations, in Geographic Information Systems: Priciples, Techniques Iussues,2nd Edition, edited by P.A. Longley, M. F. Goodchild, D. J. Maguire, D. W. Rhind (New york:Wiley & Sons), pp. 503-526. [4] P. A. Burrough and R. A. McDonnel, 1998, Principles of Geographical Information Systems,Oxford University Press. [5] G. Caristi, V. Fiorani, S. Lo Bosco and A. Vieni,2019, Project management and optimization processes choices to maximize resource allocation results,Applied Mathematical Sciences, vol. 13 (17), pp.845-857. [6] A. Duma and M. Stoka, 2000, Geometric probabilities for convex bodies of revolution in the euclidean space E3, rend. Circ. Mat. Palermo, serie II Suppl.65, pp. 109-115. [7] A. Duma and M. Stoka, 2004, Goemetric probabilities for quadratic lattice with quadratic obstacles,Ann. I.S.U.P., 48/1-2, pp. 19-42. [8] M. F. Gooldchild and A. M. Shotridge, 2002, Geometric probability and GIS: some applications for the statistics of intersections, International Journal of geographical Information Sciences, 16/3, pp. 227-243. [9] H. R. Kirby, 1997, Buffon’s Needle and probability of intercepting short-distance trips by multiple screen-line surveys, Geographical Analysis, 29, pp.64-71. [10] D. A. Klain and G. C. Rota, 1997, Introduction to Geometric Probability, Cambridge University Press. [11] H. Mitasova and M. Neteler, 2004, Open souces GIS:a GRASS GIS approach, 2nd Edition,Kluwer Academic Publishers. [12] H. Poincaré, Calcul des probabilités, 1912, 2nd ed.,Gauthier-Villard, Paris. [13] L. A. Santalò, 1976, Integral Geometry and Geometric Probability, Addison Wesley, Mass. [14] P. A. Rogerson, 1990, Buffon’s needle and the estimation of migration distances, Mathematical Population Studies, 2, pp. 229-238. [15] M. Stoka, 1982, Probabilità e Geometria, Herbita. [16] M. Stoka, 1975-1976, Probabilitiés géométriques de type Buffon dans le plan euclidien, Atti Acc. Sci. Torino, 110, pp. 53-59.