The Genetic Mechanism of Inertinite in the Middle Jurassic Inertinite-Rich Coal Seams of the Southern Ordos Basin
Source: By:Dongdong Wang, Qiang Mao, Guoqi Dong, Shipeng Yang, Dawei Lv, Lusheng Yin
DOI: https://doi.org/10.30564/jgr.v1i3.1404
Abstract:[1] Stach E., Mackowsky M. T., Teichmüller M, et al. Stach’s Textbook of Coal Petrology, 3rd Ed [M]. Gebrfider Borntraeger, Berlin, 1982, 535. [2] Taylor G. H., Liu S. Y. and Diessel C. F. K. The Cold-climate Origin of Inertinite-rich Gondwana Coals [J]. International Journal of Coal Geology, 1989, 11(1): 1-22 DOI: https://doi.org/10.1016/0166-5162(89)90110-9 [3] Singh M. P. and Shukla R. R. Petrographic Characteristics and Depositional Conditions of Permian Coals of Pench, Kanhan, and Tawa Vally Coalfields of Satpura Basin, Madhya Pradesh, India [J]. International Journal of Coal Geology, 2004, 59: 209–243. DOI: https://doi.org/10.1016/j.coal.2004.02.002 [4] Li X. Y. Conditions of Inertinite-rich Coal Generation, Shendong Mining area: Significance of Fungal Alternating Origin of Inerts [J]. Coal Geology & Exploration, 2005, 33(5): 1-4. DOI: https://doi.org/10.1360/gs050303 [5] Jasper A., Uhl D., Guerra-Sommer M, et al. Upper Paleozoic Charcoal Remains from South America: Multiple Evidences of fire events in the Coal bearing Strata of the Paraná Basin, Brazil [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306: 205– 218. DOI: https://doi.org/10.1016/j.palaeo.2011.04.022 [6] Jasper A., Guerra-Sommer M., Hamad A. M. B. A, et al. The Burning of Gondwana: Permian fires on the Southern Continent — A palaeo- botanical Approach [J]. Gondwana Research, 2013, 24: 48-160. DOI: https://doi.org/10.1016/j.gr.2012.08.017 [7] Jasper A., Agnihotri D., Tewari R, et al. Fires in the mire: Repeated fire events in Early Permian ‘peat forming’ Vegetation of India [J]. Geological Journal, 2016, 52: 955-969. DOI: https://doi.org/10.1002/gj.2860 [8] Manfroi J., Uhl D., Guerra-Sommer M, et al. Extending the database of Permian palaeo- wildfire on Gondwana: Charcoal remains from the Rio do Rasto Formation (Paraná Basin), Middle Permian, Rio Grande do Sul State, Brazil[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 436: 77–84. DOI: https://doi.org/10.1016/j.palaeo.2015.07.003 [9] Kauffmann M., Jasper A., Uhl D, et al. Evidence for palaeo- wildfire in the Late Permian palaeotropics— Charcoal from the Motuca Formation in the Parnaíba Basin, Brazil [J]. alaeogeography, Palaeoclimatology, Palaeo- ecology, 2016, 450: 122–128. DOI: https://doi.org/10.1016/j.palaeo.2016.03.005 [10] Wu C. R., Zhang H., Li X. Y, et al. Study on Coal Quality and Coal Metamorphism of Early-Middle Jurassic Coal Rocks in Northwest China [M]. Beijing: Coal Industry Press, 1995. [11] Zhang X. Y., Tong Y. Z., Xiao D. X, et al. Discussion on the Genesis of Huangling Candle Coal [J]. Coalfield Geology of China, 1996(S): 10-16. [12] Zhang J., Yu B. and Tang J. X. Characteristics and Facies of Ya-8 coal in Yining Coalfield, Xinjiang [J]. Coalfield Geology of China, 1999, 11(1): 30−32. [13] Li W. H., Chen Y. F., Chen W. M, et al. Distribution Features of Micro-Constituents for Coal in China Main Mining Area [J]. Coal Science and Technology, 2000, 28(9): 31−34. DOI: https://doi.org/10.13199/j.cst.2000.09.34.liwh.011 [14] Zeng F. G. Petrographic Characteristics of Coal Seam No2-2 from Daliuta mine district, Shenfu area, North Shaanxi [J]. Coal Geology & Exploration, 2000, 28(3): 25−27. Bai X. F., Li W. H., Chen W. M, et al. Study on Distribution and Characteristics of coals with weak reductive degree in West china[J]. Journal of Coal Science, 2005, 30(4): 502−506. DOI: https://doi.org/10.13225/j.cnki.jccs.2005.04.021 [15] Chang H. Z., Zeng F. G., Li W. Y, et al. Micro-FTIR Study on Structure of Macerals from Jurassic Coals in Northwestern China [J]. Spectroscopy and Spectral Analysis, 2008, 28(7): 1535-1539. DOI: https://doi.org/10.1016/j.sab.2008.04.017 [16] Huang W. H., Tang S. H., Tang X. Y, et al. The Jurassic coal petrology and the research significance of Northwest China [J]. Coal Geology & Exploration, 2010, 38(4): 1-6. DOI: https://doi.org/1001-1986(2010)04-0001-06 [17] Hower J. C., O’Keefe J. M. K., Watt M. A, et al. Notes on the origin of inertinite macerals in coals: Observations on the importance of fungi in the origin of macrinite [J]. International Journal of Coal Geology, 2009, 80(2): 135–143. DOI: https://doi.org/10.1016/j.coal.2009.08.006 [18] Hower J. C., O’Keefe J. M. K., Volk T. J, et al. Funginite-resinite associations in coal [J]. International Journal of Coal Geology, 2010, 83(1): 64-72. DOI: https://doi.org/10.1016/j.coal.2010.04.003 [19] Teichmüller M. Vergleichende mikroskopische Untersuchungen versteinerter Torfie des Ruhrkarbons und der daraus entstanden Steinkohlen [C]. C. R., 3rd Carboniferous Cong, Heerlen, 1952: 607-613. [20] Han D. X. Coal petrology in China [M]. Shanghai: East China Normal University Press, 1996. [21] Harvey R. D. and Dillon J. W. Maceral distributions in Illinois coals and their paleoenvironmental implications [J]. Internation -al Journal of Coal Geology, 1985, 5(1-2): 141-165. DOI: https://doi.org/10.1016/0166-5162(85)90012-6 [22] Phillips T. L., Peppers R. A. and Dimichele W. A. Stratigraphic and interregional changes in Pennsylvanian coal-swamp vegetation: Environmental inferences[J]. International Journal of Coal Geology, 1985, 5(1-2): 43-109. DOI: https://doi.org/10.1016/0166-5162(85)90010-2 [23] Hunt J. W. and Smyth M. Origin of Inertinite-rich coals of Australian Cratonic Basins [J]. International Journal of Coal Geology, 1989, 11(1): 23-46. DOI: https://doi.org/10.1016/0166-5162(89)90111-0 [24] Zhuang J. and Wu J. J. Middle Jurassic coal accumulation characteristics and coal comprehensive utilization of southern Ordos Basin [M]. Beijing: Geological Publishing House, 1996. [25] Chen X. W., Zhuang X. G., Zhou J. B, et al. Coal Quality and its Distribution of the Eastern Junggar Coalfield in Junggar Basin, Xinjiang [J]. Xinjiang Geology, 2013, 31(1): 89-94. DOI: https://doi.org/10.3969/j.issn.1000-8845.2013.01.019 [26] Hagelskamp H. H. B. and Snyman C. P. On the Origin of Low-reflecting Inertinites in Coals from the Highveld Coalfield, South Africa [J]. Fuel, 1988, 67(3): 307-313. DOI: https://doi.org/10.1016/0016-2361(88)90311-0 [27] Moore T. A., Shearer J. C. and Miller S. L. Fungal origin of oxidised plant material in the Palangkaraya peat deposit, Kalimantan Tengah, Indonesia: Implications for ‘inertinite’ formation in coal [J]. International June Coal Geology, 1996, 30(1-2): 1-23. DOI: https://doi.org/10.1016/0166-5162(95)00040-2 [28] Styan W. B. and Bustin R. M. Petrographyof some fraser river delta peat deposits: Coal maceral and microlithotype precursors in temperate-climate peats [J]. International Journal of Coal Geology, 1983, 2(4): 321-370. DOI: https://doi.org/10.1016/0166-5162(83)90016-2 [29] Scott A. C. Observation on the nature and origin of fusinite [J]. International Journal of Coal Geology, 1989, 12(1-4): 443-475. DOI: https://doi.org/10.1016/0166-5162(89)90061-X [30] Teichmüller M. The genesis of coal from the viewpoint of coal petrology [J]. International Journal of Coal Geology, 1989, 12(1-4): 1-87. DOI: https://doi.org/10.1016/0166-5162(89)90047-5 [31] Austen D. E. G., Ingram D. J. E., Given P. H, et al. Electron sprin resouance study of pure macerals[J]. Coal Science, 1966, 55: 344-362. DOI: https://doi.org/10.1021/ba-1966-0055.ch021 [32] Jones T. P. and Chaloner W. G. Fossil charcoal, its recongnition and palaeoatmospheric significance [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1991, 97(1-2): 39-50. DOI: https://doi.org/10.1016/0031-0182(91)90180-Y [33] Bustin R. M. and Guo Y. Abrupt changes (jumps) in reflection values and chemical compositions of artificial charcoals and inertinite in coals[J]. International Journal of Coal Geology, 1999, 38(3-4): 237-260. DOI: https://doi.org/10.1016/S0166-5162(98)00025-1 [34] Guo Y. and Bustin R. M. FTIR spectroscopy and reflectance of modern charcoals and fugnal decayed woods: implications for studies of inertinite in coals[J]. International Journal of Coal Geology, 1998, 37(1-2): 29-53. DOI: https://doi.org/10.1016/S0166-5162(98)00019-6 [35] Scott A. C. The Pre-Quaternary history of fire [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 164: 281-329. DOI: https://doi.org/10.1016/s0031-0182(00)00192-9 [36] Petersen H. I. and LindstrÖm S. Synchronous Wildfire Activity Rise and Mire Deforestation at the Triassic–Jurassic Boundary [J]. Plos One, 2012, 7(10): e47236. DOI: https://doi.org/10.1371/journal.pone.0047236 [37] Uglik M. and Nowak J. L. Petrological recognition of bituminous inertinite enriched coals of the Lower Silesian Coal Basin(Central Sudetes, SW Poland) [J]. International Journal of Coal Geology, 2015, 139: 49–62. DOI: https://doi.org/10.1016/j.coal.2014.07.009 [38] Wang Z. Q. and Chen A. S. Traces of arborescent lycopsids and dieback of the forest vegetation in relation to the terminal Permian mass extinction in North China [J]. Review of Palaeobotany and Palynology, 2001, 117: 217–243. DOI: https://doi.org/10.1016/S0034-6667(01)00094-X [39] Sun Y. Z., Püttmann W., Kalkreuth W, et al. Petrologic and geochemical characteristics of seam 9–3 and Seam 2, Xingtai Coalfield, northern China [J]. International Journal of Coal Geology, 2002, 49:251–262. DOI: https://doi.org/10.1016/S0166-5162(01)00067-2 [40] Yan M. X., Wan M. L., He X. Z, et al. First report of Cisuralian (early Permian) charcoal layers within a coal bed from Baode, North China with Reference to Global Wildfire Distribution [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 394–408. DOI: https://doi.org/10.1016/j.palaeo.2016.07.031 [41] Sun Y. Z., Zhao C. L., Püttmann W, et al. Evidence of widespread wildfires in a coal seam from the middle Permian of the North China Basin [J]. Lithosphere, 2017, 9(4): 595-608. DOI: https://doi.org/10.1130/L638.1 [42] Uhl D. and Kerp H. Wildfires in the late Palaeozoic of Central Europe—The Zechstein (Upper Permian) of NW-Hesse (Germany) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 199: 1–15. DOI: https://doi.org/10.1016/S0031-0182(03)00482-6 [43] Noll R., Uhl D. and Lausberg S. Brandstrukturen an Kieselhölzern der Donnersberg Formation (Oberes Rotliegend, Unterperm) des Saar-Nahe-Beckens (SW-Deutschland) [J]. Veröffentlichungen des Museums für Naturkunde Chemnitz, 2003, 26: 63–72. [44] Uhl D., Lausberg S., Noll R, et al. Wildfires in the late Palaeozoic of central Europe — An overview of the Rotliegend (Upper Carboniferous–Lower Permian) of the Saar-Nahe Basin SW-Germany) [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 207(1-2): 23–35. DOI: https://doi.org/10.1016/j.palaeo.2004.01.019 [45] Uhl D., Jasper A., Hamad A. M. B, et al. Permian and Triassic wildfires and atmospheric oxygen levels [C]. Proceedings, 1st WSEAS International Conference on Environmental and Geological Science and Engineering: World Scientific and Engineering Academy and Society, 2008: 179–187. [46] Uhl D., Butzmann R., Fischer T. C, et al. Wildfires in the late Palaeozoic and Mesozoic of the Southern Alps — The late Permian of the Bletterbach-Butterloch area (northern Italy) [J]. Rivista Italiana di Paleontologia e Stratigrafia, 2012, 118(2): 223–233. DOI:https://doi.org/10.13130/2039-4942/6002 [47] Scott A. C. Coal petrology and the origin of coal macerals: a way ahead [J]. International Journal of Coal Geology, 2002, 50(1-4): 119-134. DOI: https://doi.org/10.1016/S0166-5162(02)00116-7 [48] Scott A. C. and Glasspool I. J. Observations and Experiments on the Origin and Formation of Inertinite Group Macerals [J]. International Journal of Coal Geology, 2007, 70(1-3): 53-66. DOI: https://doi.org/10.1016/j.coal.2006.02.009 [49] Diessel C. F. K. The Stratigraphic Distribution of Inertinite[J]. International Journal of Coal Geology, 2010, 81(4): 251–268. DOI: https://doi.org/10.1016/j.coal.2009.04.004 [50] Wang D. D. Sequence-palaeogeography and Coal-accumulation of the Middle Jurassic Yan’an Formation in Ordos Basin [D]. Beijing: China University of Mining and Technology, 2012: 224-225. [51] Vakhrameev V. A. Range and Paleoecology of Mesozoic Conifers, Cheirolepidiaceae [J]. Paleontological Journal, 1970, 70(1): 19-34. [52] Miao S. J. Spore pollen, Mesozoic Strata and Paleontology in the Coal bearing Strata of Guyang, Inner Mongolia [M]. Beijing: Geological Publishing House,1982. [53] Duan Z. H. Classopollis pollen and its paleoclimate meaning[J]. Coal Geology and Exploration, 1991, 19(6): 14-21. [54] Qian. L. J. and Wu J. J. The Jurassic Spore pollen Combination in the Northwestern Shaanxi, The Jurassic Coal-bearing Strata and coal Accumulation Characteristics in the Northwestern Shaanxi [M]. Xi’an: Northwest University Press, 1987. [55] Zhou C. G., Yang Q., Pan Z. G, et al. Paleo-climate Evolution of Yan’an Stage Inferred from Petrographic Composition of Coal [J]. Coal Geology of China, 1996, 8(4): 12-14+19. [56] Yang Q. and Han D. X. Coalfield Geology of China [M]. Beijing: Coal Industry Press, 1979. [57] Wang D. D., Yan Z. M., Liu H. Y, et al. The net primary productivity of Mid-Jurassic peatland and its control factors: Evidenced by the Ordos Basin [J]. International Journal of Mining Science and Technology, 2018, 28(2): 177-185. DOI: https://doi.org/10.1016/j.ijmst.2017.06.001 [58] Fang A. M., Lei J. J., Jin K. L, et al. An Anthracographic Study on No.7 Coal in Xishan Coalfield, Shanx [J]. Coal Geology of China, 2003, 15(5): 12-16. [59] Wang D. Z. A Study on No.5 Coal Seam Facies, Huating Mining Area [J]. Coal Geology of China, 2005, 17(4): 6-8+70. DOI: https://doi.org/10.3969/j.issn.1674-1803.2005.04.003 [60] Li Q. Coal facies of No.2 coal in Yanchuannan coal field of Shanxi: Significance for constituencies of coalbed methane exploitation [J]. Petroleum Geology & Experiment, 2014, 36(2): 245-248+256. DOI: https://doi.org/10.11781/sysydz201402245 [61] Fan Y. H., Qu H. J., Wang H, et al. The application of trace elements analysis to identifying sedimentary media environment: a case study of Late Triassic strata in the middle part of western Ordos Basin [J]. Geology in China, 2012, 39(2): 382-389. DOI: https://doi.org/10.1016/j.still.2012.05.017 [62] Wang S. J., Huang X. Z., Tuo J. C, et al. Evolutional Characteristics and Their Paleocl imate Signif icance of Trace Elements in the Hetaoyuan Formation, Biyang Depression [J]. Acta Sedimentologica Sinica, 1997, 15(1): 66-71. DOI: https://doi.org/10.14027/j.cnki.cjxb.1997.01.012 [63] Hu X. F,, Liu Z. J., Liu R, et al. Trace Element Characteristics of Eocene Jijuntun Formation and the Favorable Metallogenic Conditions of Oil Shale in Fushun Basin [J]. Journal of Jilin University(Earth Science Edition), 2012, 42(S1): 60-71. DOI: https://doi.org/10.13278/j.cnki.jjuese.2012.s1.008 [64] Zhang B. and Yao Y. M. Trace Element and Palaeoenvironmental Analyses of the Cenozoic Lacustrine Deposits in the Upper Es4 Submember of the Dongying Basin [J]. Journal of Stratigraphy, 2013, 37(2): 186-192. [65] Teng G. R., Liu W. H., Xu Y. C, et al. The Discussion on Anoxic Environments and Its Geochemical Identifying Indices [J]. Acta Sedimentologica Sinica, 2004, 22(2): 365-372. DOI: https://doi.org/10.3969/j.issn.1000-0550.2004.02.026 [66] Liang W. J., Xiao C. T. and Xiao S. Study on Relationships between Paleoenvironment, Paleo- climate of Middle Permian-middle Triassic and Constant, Trace Elements in Western Sichuan [J]. Science Technology and Engineering, 2015, 15(11): 14-24. [67] Zhao X. W. Introduction to Paleoclimatology [M]. Beijing: Geological Publishing House, 1992. [68] Lu J., Shao L. Y., Wang Z. G, et al. Organic carbon isotope composition and paleoclimatic evolution of Jurassic coal seam in the northern Qaidam basin [J]. Journal of China University of Mining & Technology, 2014, 43(4): 612-618. DOI: https://doi.org/10.13247/j.cnki.jcumt.000091 [69] Lu J., Yang M. F., Shao L. Y, et al. Paleoclimate change and sedimentary environment evolution, coal accumulation: A Middle Jurassic terrestrial [J]. Journal of China Coal Society, 2016, 41(7): 1788-1797.DOI: https://doi.org/10.13225/j.cnki.jccs.2016.0061 [70] Large D. J. A 1.16 Ma record of carbon accumulation in western European peatland during the Oligocene from the Ballymoney lignite, Northern Ireland [J]. Journal of the Geological Society, 2007, 164(6): 1233-1240. DOI: https://doi.org/10.1144/0016-76492006-148 [71] Large D. J., Jones T. F., Somerfield C, et al. High-resolution Terrestrial Record of Orbital Climate Forcing in Coal [J]. Geology, 2003, 31(4): 303-306. DOI: https://doi.org/10.1016/0031-0182(94)90005-1 [72] Li X. Q., Zhang S. C., Zhu G. Y, et al. Types and Research Direction of Biogenic Gas in China [J]. Natural Gas Geoscience, 2005, 16(4): 477-484. [73] Scott A. C. and Jones T. P. The Nature and Influence of fire in Carboniferous Ecosytems [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 106(1-4): 91-112. DOI: https://doi.org/10.1016/0031-0182(94)90005-1 [74] Glasspool I. J. and Scott A. C. Phanerozoic Concentrations of Atmospheric Oxygen Reconstructed from Sedimentary Charcoal [J]. Nature Geoscience, 2010, 3(9): 627-630. DOI: https://doi.org/10.1038/ngeo923 [75] Jones T. P. Fusain in Late Jurassic Sediments from Witch Ground Graben, North Sea [J]. U.K, Mededelingen Nederlands Instituut voor Toegepaste Geowetenschappen TNO, 1997, 58: 93–103. [76] Zhang J. L. and Di X. Y. The Study of Ground Fire and Smoldering: A Review [J]. Journal of Temperate, 2018, 1(3): 19-23. DOI: https://doi.org/10.3969/j.issn.2096-4900.2018.03.004 [77] Shu L. F., Wang M. Y., Tian X. R, et al. Fire Environment Mechanism of Ground fire Formation in Daxing’ an Mountains [J]. Journal of Natural Disasters, 2003, 12(4): 62-68. DOI: https://doi.org/10.13577/j.jnd.2003.0411 [78] Rein G., Cleaver N., Ashton C, et al. The Severity of Smouldering Peat Fires and Damage to the Forest Soil [J]. Catena, 2008, 4(3): 304-309. DOI: https://doi.org/10.1016/j.catena.2008.05.008 [79] Wang H. R., Liang D., Zhan G. T, et al. Spontaneous Combustion Characteristics of Peat under Low Temperature [J]. Fire Science and Technology, 2018, 37(2): 171-174. DOI: https://doi.org/10.3969/j.issn.1009-0029.2018.02.007