Mineral Chemistry and Nomenclature of Amphiboles of Garnet Bearing Amphibolites From Thana Bhilwara, Rajasthan, India
Source: By:H. Thomas, Haritabh Rana
DOI: https://doi.org/10.30564/jgr.v2i2.2130
Abstract:[1] Thomas, H. Petrographic study and Petrogenesis of the Precambrian rocks around Thana, District Bhilwara Rajasthan. Unpublished Ph.D. thesis (B.H.U), 1991: 321. [2] Thomas, H. Pressure Temperature considerations for granulite from Thana Gyangarh, District - Bhilwara, Rajasthan: Implication for crustal evolution. In: R. K. Srivastava and R. Chandra (Eds.), Magmatism in relation to Divers Tectonic Setting. Oxford and IBH publishing Com. Pvt. Ltd., 1995: 439 - 456. [3] Thomas, H. Polymetamorphism in the Archaean Gneiss Complex of Shivpura Gyangarh, District Bhilwara, Rajasthan. In: H. Thomas (Ed.), Granulite facies metamorphism and Crustal Evolution., Atlantic publishers & Distributors, New Delhi., 2005a: 120-146. [4] Thomas, H. Mineralogy and Mineral Chemistry of the Meta-Norite from Shivpura, District Bhilwara, Rajasthan. International Conference on Precambrian continental Growth & Tectonism (PCGT) (Ed. R. Chandra et al.)., 2005b: 209-212. [5] Thomas, H. Petrology and geochemistry of amphibolites around Thana, Rajasthan, Western India. International Journal of Geology, Earth and Environmental Sciences, 2014, 4(I): 156-167. [6] Thomas, H., Sujata, S. Petrology and Reaction texture of the Metanorites from Shivpura, District Bhilwara, Rajasthan. In: R. K. Srivastava, C. Sivaji and N. V. Chalapathi Rao (Eds.), Indian Dykes: Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt. Ltd., New Delhi., 2008: 571-587. [7] Thomas, H., Vishwakarma, N. Petrochemical Studies of metanorite from Asind district Bhilwara, Rajasthan, India. In: 2nd International Conference on Precambrian continental growth and Tectonism., 2009: 104-108. [8] Thomas, H., Vishwakarma, N. Petrochemical Studies of Amphibolites from Kirimal District Bhilwara, Rajasthan, India. Memoir of the Geological Society of India, 2011, 77: 559-571. [9] Vishwakarma, N., Thomas, H. Petrographic and geochemical characteristics of Charnockite from Asind, District Bhilwara, Rajasthan: Implication for its origin. Journal of applied geochemistry, 2015: 10-21. [10] Joshi, M., Thomas, H., Sharma R. S. Granulite facies metamorphism in the Archaean gneiss complex from North-Central Rajasthan. Proc. Nat. Acad. Sci. India, 1993, 63(A): 167-187. [11] Thomas, H., Lalu Paudel. Petrogeochemistry of Amphibolites from Shivpura, District Bhilwara, Rajasthan, India. Journal of Institute of Science & Technology, Tribhuvan University, Nepal, 2015, 20(2): 103-112. [12] Kavit, S., Thomas, Harel. Petrogeochemistry of Gneissic Rocks Exposed Around Arjungarh, District Rajsamand, Rajasthan, India. Crimson Publishers, 2018: 85-91. https://www.researchgate.net/profile/Kavita-Sorokhaibam-2/publication/328190186_Petrogeochemistry_of_gneissic_rocks_exposed_around_Arjungarh_District_Rajsamand_Rajasthan_India/links/5c08d894299bf139c741d341/Petrogeochemistry-of-gneissic-rocks-exposed-around-Arjungarh-District-Rajsamand-Rajasthan-India.pdf [13] Guilmette, C., Hébert, R., Dupuis, C., Wang, C., Li, Z.Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences, 2008, 32(5-6): 423-437. [14] Kaur, P., Chaudhri, N., Raczek, I., Kröner, A., Hofmann, A. W. Record of 1.82 Ga Andean-type continental arc magmatism in NE Rajasthan, India: insights from zircon and Sm-Nd ages, combined with Nd-Sr isotope geochemistry. Gondwana Research, 2009, 16(1): 56-71. [15] Xiang, H., Zhang, L., Zhong, Z. Q., Santosh, M., Zhou, H. W., Zhang, H. F., & Zheng, S. Ultrahigh-temperature metamorphism and anticlockwise P-T-t path of Paleozoic granulites from north Qinling-Tongbai orogen, Central China. Gondwana Research, 2012, 21(2-3): 559-576. [16] Laurita, S., Rizzo, G. The First Occurrence of Asbestiform Magnesio-Riebeckite in Schists in the Frido Unit (Pollino Unesco Global Geopark, Southern Italy). Fibers, 2019, 7(9): 79. [17] Yue, W., Yue, X., Panwar, S., Zhang, L., Jin, B. The Chemical Composition and Surface Texture of Transparent Heavy Minerals from Core LQ24 in the Changjiang Delta. Minerals, 2019, 9(7): 454. [18] Bayet, L., Agard, P., John, T., Menneken, M., Tan, Z., Gao, J. Tectonic evolution of the Tianshan Akeyazi metamorphic complex (NW China). V. Lithos, 2020, 354: 105273. [19] Gogoi, B., Saikia, A., Ahmad, M. Mafic-felsic magma interactions in the Bathani volcanic-plutonic complex of Chotanagpur Granite Gneiss Complex, eastern India: implications for assembly of the Greater Indian Landmass during the Proterozoic. Episodes J Intl Geosci, 2020, 43(2): 785-810. [20] Lampropoulou, P., Petrounias, P., Giannakopoulou, P. P., Rogkala, A., Koukouzas, N., Tsikouras, B., Hatzipanagiotou, K. The Effect of Chemical Composition of Ultramafic and Mafic Aggregates on Their Physicomechanical Properties as well as on the Produced Concrete Strength. Minerals, 2020, 10(5): 406. [21] Leake B E, Woolley A R, Arps C E S, Birch W D, Gilbert M C, Grice J D, Hawthorne F C, Kato A, Kisch H J, Krivovichev V G, Linthout K, Laird J, Mandarino J A, Maresch W V, Nickel E H, Rock N M S, Schumacher J C, Smith D C, Stephenson N C N, Ungaretti L, Whittaker E J W, Youzhi G. Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names, The Canadian Mineralogist, 1997, 35: 219-246. [22] Leake, B.E., Mogessie, A., Ethinger, K. Nomenclature of amphiboles additions and revisions to the international Mineralogical Associations (IAM) amphibole nomenclature. Mineralogical Mag., 2004, 68: 209-215. [23] Deer, W.A., Howie, R.A., Zussman, J. An Introduction to the Rock-Forming Minerals. Longman Group Limited, London,U.K,1966. [24] Deer, W.A., Howie, R.A., Zussman, J. An Introduction to the Rock-Forming Minerals (2nd ed.). Longman Group UK Limited, Essex, U.K, 1992. [25] Leake, B.E. Nomenclature of amphiboles. Can. Mineral., 1978, 16: 501-520. [26] Leake, B.E., Woolley, A.R, Birch, W.D., Burke, E.A.J., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kishch, H.J., Krivovichev, V.G., Schumacher, J.C.,Stephenson, N.C.N., Whittaker, E.J.W. Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association’s (1997), recommendations. Can. Mineral., 2003, 41: 1355-1362. [27] Burke, E.A.J., Leake, B.E. Named amphiboles: A New category of amphiboles recognized by the International Mineralogical Associate (IMA), and the proper order of prefixed to be used in amphibole name. Canadian Mineralogist, 2004, 42: 1881-1883. [28] Raase, P. Al and Ti content of hornblende indicators of pressure and temperature of regional metamorphism. Contr. Mineral Petrol., 1974, 45: 231-236. [29] Fosile, S. Hastingstes and amphiboles from the epidote-amphibolite facies. Norsk. Geol. Tidsskr. 1974, 25: 74. [30] Ramberg, H. The origin of metamorphic and metasomatic rocks. Univ. Chicago Press, Chicago, 1952. [31] Harry, W. T. Aluminium replacing silicon in some silicate lattices. Mineral Mag. 1950, 29: 142-149. [32] DeVore, G.W. Crystal growth and the distribution of elements. Jour. Geol., 1955, 63: 471-494. [33] Shido, F. Plutonic and metamorphic rocks of the Nokoso and Irituno districts in the central Abukuma Plateau. Jour. Fac. Sci. Uni., Tokyo, 1958, 11: 131-217. [34] Engel, A.E.J., Engel, C.G. Progressive metamorphism of amphibolite, North-West Adirondack Mountain, New York, in Petrologic Studies. Geol. Soc. Am. Bull., 1962, 76: 718-734. [35] Vyhnal, C.R., McSween, Harry Y., Spear, J.A. Hornblende chemistry in southern Appalachian granitoids: Implications for aluminum hornblende thermobarometry and magmatic epidote stability, American Mineralogist, 1991, 76: 176-188. [36] Shimazaki, H., Bunno, M., Ozawa, T. Sadanagaite and magnesio-sadanagaite, new silica-poor members of calcic amphibole from Japan. Am. Mineral., 1984, 69: 465-471. [37] Hawthorne, F.C., Oberti, R., Ungaretti, L., Grice, J.D. A new hyper-calcic amphibole with Ca at the A site: fluorcannilloite from Pargas, Finland. Am. Mineral., 1996b, 81: 995-1002. [38] Schumacher, J.C. Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers. Mineralogical Magazine, 1991, 55: 3-18.