New Data on the Genesis and Evolution of the Primitive Magmas of Mount Cameroon: Contribution of Melt Inclusions
Source: By:Legrand Joseph Tchop, Pauline Wokwenmendam Nguet, Benjamin Ntieche, Victor Metang, Jacques Dili Rake, Merlin Isidore Teitchou, Jacqueline Vander Auwera, Georges Emmanuel Ekodeck, Charles Nkoumbou
DOI: https://doi.org/10.30564/jgr.v2i4.2308
Abstract:Mount Cameroon is a Plio-Quaternary volcanic massif, without a central crater, made up of more than 140 pyroclastic cones. It is one of the active volcanoes of the Cameroon Volcanic Line. Mount Cameroon melt inclusions are found in microdroplets trapped in the early minerals (olivines) from the pyroclastic products. The analysis of these melt inclusions allowed us to find primitive liquids compared to lavas. Major elements study of the magmatic inclusions, trapped in the most magnesian olivines (Mg#84-86) of Mount Cameroon revealed “primitive” liquids of basanite and alkali basalt type with variable composition compared to the much more uniform basalts of the magmatic series of Mount Cameroon. The study of these trapped liquids shows that: (1) the original primitive lavas did not undergo the process of evolution by FC, but rather underwent fundamentally (or exclusively) the process of partial melting; (2) the emitted lavas, evolved essentially by FC; (3) the variations in the trace element contents of the primitive liquids directly reflect a variation in the rate of partial melting of a homogeneous mantelic source. The very high La/Yb ratios of the Mount Cameroon melt inclusions (> 20) characterize a garnet lherzolite source. Spectra of the melt inclusions show a negative anomaly or depletion in K, Rb and Ba as those of HIMU. The “primitive” liquids and lavas of Mount Cameroon represent a co-genetic sequence formed by varying degrees of partial melting of a source considered as homogeneous.
References:[1] Roedder, E. Origin and significance of magmatic inclusion. Bulletin of Mineralogy, 1979, 102: 487-510. [2] Sobolev, A. V. Melt inclusions in minerals as a source of principle petrological information. Petrology, 1996, 4(3): 209-220. [3] Melson, W.G. Monitoring the 1980-1982 eruptions of Mount St. Helens: compositions and abundances of glass. Science, 1983, 221: 1387-1391. [4] Gurenko, A. A. Chaussidon, M. Enriched and depleted primitive melts in olivine from Icelandic tholeiites: Origin by continuous melting of a single mantle column. Geochim. Cosmochim. Acta, 1995, 59(14): 2905-291. [5] Vogel, T.A. Aines, R. Melt inclusions from chemically zoned ash flow sheets from the Southwest Nevada volcanic field. Journal of Geophysical Research, 1996, 101: 5591-5610. [6] Saal, A. E. Hart, S. R. Shimizu, N. Hauri, E. H. Layne, G. D. Pb isotopic variability in melt inclusions from Oceanic Island Basalts. Polynesia, Science, 1998, 282: 1481-1484. [7] Schiano, P. Eiler, J. M. Hutcheon, I. D. Stolper, E. M. Primitive CaO-rich, silica under saturated melts in island arc: Evidence for the involvement of clinopyroxene-rich lithologies in the petrogenesis of arc magmas. Geochemistry, Geophysics, Geosystems, 2000: 1, 1999GC000032. [8] Luhr, J.F. Glass inclusions and melt volatile contents at Parícutin Volcano, Mexico. Contributions to Mineralogy and Petrology, 2001, 142: 261-283. [9] Déruelle, B. Bardintzeff, J.M., Cheminée, J.L., Ngounouno, I., Lissom, J., Nkoumbou, C., Étamé, J., Hell, J.V., Tanyiléké G. N’ni, J. Ateba, B. Ntepe, N. Nono, A. Wandji, P. Fosso, J. Nkouathio, D.G. Eruptions simultanées de basalte alcalin et de hawaiite au Mont Cameroun (28 mars-17 avril 1999). Comptes Rendus Académie Sciences Paris, Sciences de la terre et des planètes, 2000, 331 :525-531. [10] Tsafack, J.P.F., Wandji, P. Bardintzeff, J.M. Bellon, H., Guillou, H. The Mount Cameroon stratovolcano (cameroon volcanic line, central africa): petrology, geochemistry, isotope and age data geochemistry. Bulgarian Academy of Sciences, Bulgarian Mineralogical Society, Sofia, 2009, 47: 65-78. [11] Ngwa, C.N., Shu, B.N, Mbassa, B.J. Aka, F.T. Wokwenmendam, P.N. Olivine chemistry from Cameroon evidence of carbonate metasomatism along the ocean-continental of the Cameroon Volcanic line. Mineralogy and Petrology, 2019b, 114: 57-70. [12] Ngounouno, I., Déruelle, B., Bardintzeff, J.M. Wehrlite and clinopyroxenite xenoliths from Mout Cameroon: implications for lithospheric processes. XI European union of geosciences meeting, Strasbourg, 8-12 April. J Conf. Abstr 6, 2001, 1: 474-475. [13] Ngounouno, I., Déruelle, B., Montigny, R., Demaiffe D. Les camptonites du Mont Cameroun, Afrique. C R Geosciences, 2006, 338: 537-544. [14] N’ni, J., Le volcan actif du Mont Cameroun (Ligne du Cameroun) géologie et pétrologie du volcan. Thèse de 3ème cycle, Univ. de Yaoundé, 1984: 257. [15] Bardintzeff, J.M., Déruelles B., Cheminée, J.L., Etame, J., Fosso J., Hell, J. V., Lissom, J., Ngounouno, I., Nkouathio, D. G. Nkoumbou, C., Nni, J., Nono, A., L’éruption de mars-avril 1999 du Mont Cameroun : dynamisme et premières données pétrologiques. Cahier géologique, Univ. P. M. Curie, Paris, 2000, 135: 1835-1837. [16] Suh, C.E., Luhr, J.F., Njome, M.S. Olivine-hosted glass inclusions from Scoriae erupted in 1954-2000 at Mount Cameroon volcano, West Africa Journal of Volcanology and Geothermal Research, 2007. DOI: https://doi.org/10.1016/j.jvolgeores.2007.07.004 [17] Suh, C.E., Sparks, R.S.J., Fitton J.G., Ayonghe, S.N., Annen, C., Nana, R., Luckman, A. The 1999 and 2000 eruption of mount Cameroon: eruption behaviour and petrochemistry of lava. Bull Volcanol, 2003, 65: 267-281. [18] Mathieu, L., Kervyn, M., Ernst, G.G. Field evidence for flank instability, basal spreading and volcano-tectonic interactions at Mount Cameroon, West Africa. Bull Volcanol, 2011, 73: 851-867. [19] Deruelle, B., Moreau, C., Nkoumbou, C., Kambou, R., Lissom, J., Njonfang, E., Ghogomu, R.T., Nono, A. The Cameroon Line: a review. In: Kampunzu,A.B., Lubala, R.T., 1991. (Eds.), Magmatism in Extensional Structural Settings. Springer,Berlin, Heidelberg. 274-327. DOI: http://dx.doi.org/10.1007/978-3-642-73966-8_12 [20] Nkoumbou, C., Déruelle, B., Velde, D. Petrology of Mount Etinde nephelenite series. J. petrol., 1995, 36: 373-395. [21] Marzoli, A., Renne, P.R., Piccirillo, E.M., Francesca, C., Bellieni, G., Melfi, A.J., Nyobe, J.B., N’ni, J. Silicic magmas from the continental Cameroon Volcanic Line (Oku, Bambouto and Ngaoundere): 40Ar/39Ar dates, petrology, Sr-Nd-O isotopes and their petrogenetic significance. Contributions to Mineralogy and Petrology, 1999, 135: 133-150. [22] Wandji, P., Tsafack, J.P.F., Bardintzeff, J.M., Nkouathio, D.G., Kagou Dongmo, A., Bellon, H., Guillou, H. Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): Petrogenetic implications. Mineralogy and Petrology, 2009, 96: 81-98. [23] Fitton, J.G., Kilburn, C.R.L., Thirlwell, M.F., Hughes, D.J. 1982 eruption of Mount Cameroon, West Africa. Nature, 1983, 306: 327-332. [24] Lenhardt, N., Oppenheimer, C., Volcanism in Africa: geological perspectives, hazards, and societal implications. Extreme Natural Hazards, Disaster Risks and Societal Implications. 2014, 169-199. DOI: https://doi.org/10.1017/cbo9781139523905.018 [25] Wandji, P., Bardintzeff, J.M., Tchoua, F.M., Déruelle, B., Nkouathio, D.G., Kagou Dongmo, A., Itiga, Z., Wotchoko, P., Chakam Tagheu, P.J. Le Mont Cameroun (ligne du Cameroun): un laboratoire naturel d’étude des risques et des bienfaits du volcanisme. GSAf 12: Geoenvironnemental Catastrophes in Africa. Journal Geoscience Society, Cameroon, 2001, 1A: 134-135 [26] Déruelle, B., N’ni, J., Kambou, R. Mount Cameroon: an active volcano of the Cameroon Line. J. Afr. Earth Sci., 1987, 6: 197-214. [27] Déruelle, B., Ngounouno, I., Bardintzeff, J.M., Wehrlites et pyroxénites en nodules dans les basaltes du Mont Cameroon: évidence d’un métasomatisme mantellique. 12th International Conference of the Geological Society of Africa, Yaoundé, Cameroon, 27 March-2 April 2001, Journal of the Geoscience Society of Cameroon, 2001, 1, 1A: 39-40. [28] Nkoumbou, C., Nana, R., Eno Belinga, S., Vicat, J.P., Tchoua, F. Les éruptions du Mont Cameroun de 1999: Etude volcanologique. Histoire Géologique du Cameroun. Eno Bélinga Ed., 2001: 117-123. [29] Njome, M.S., Suh, C.E., De Wit, M.J., The Mount Cameroon volcano, West Africa: an active link between recent eruptives and mantle signature of the deep past beneath the margin of Africa. 11th SAGA Biennial Technical Meeting and exhibition Swaziland, 16-18 Sept, 2009: 533-539. [30] Tsafack, J.P.F. Volcanisme plio-quaternaire du Mont Cameroun: pétrologie, minéralogie, géochimie isotopique, géochronologie et évolution de la bordure côtière. Thèse Doctorat Ph.D., Université Yaoundé I, Cameroun, 2009: 188. [31] Wantim, M. N., Suh, C. E., Ernst, G. G. J., Kervyn, M., Jacobs, P. Characteristics of the 2000 fissure eruption and lava flow fields at Mount Cameroon volcano, West Africa: A combined field mapping and remote sensing approach, Geol. J., 2011, 46(4): 344-363. [32] Wantim, M. N., Kervyn, M., Ernst, G. G. J., Del Marmol, M. A., Suh, C. E., Jacobs, P. Numerical experiments on the dynamics of channelised lava flows at Mount Cameroon volcano with the FLOWGO thermo-rheological model, J. Volcanol. Geotherm. Res., 2013, 253: 35-53. [33] Ngwa, C.N., Lenhardt, N., Le Roux, P., Mbassa, B.J. The subsurface magma eruptions: Geochemical constraints on the subsurface magma plumbing system. Journal of Volcanology and Geothermal Reseach. 2019a, 384: 179-188. [34] Nielsen, C., Sigurdsson, H. Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glass. America Mineralogist, 1981, 66: 547-552. [35] Spilliaert, N. Dynamique de remontée, dégazage et éruptions des magmas basaltiques riches en volatils: Traçage par les inclusions vitreuses et modélisation des processus dans le cas de l’Etna, 2000-2002. IPGP, 2005: 294. [36] Jarosewich E., Parkes A.S., Wiggins L.B. MicroprobeAnalysis of Four Natural Glasses and One Mineral: An Interlab-oratory Study of Precision and Accuracy, Smithsonian Contrib.Earth Sci.1979, 22: 53-67. [37] Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B. A chemical classification of volcanic rocks based on the total alkali-silica diagram. J.Petrol, 1986, 27: 745-750. [38] Sun, S.S., McDonough, W. F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes, extrait de Magmatism in the Ocean Basins, Saunders A. D. et Norry M. J., Geological Society Special Publication, 1989, 42: 313-345. [39] Hofmann, A. W. Mantle geochemistry: the messagefrom oceanic volcanism. Nature, 1997, 385: 219-229. [40] Clague, D.A., Frey, F.A. Petrology and trace element geochemistry of the Honolulu volcanics, Oahu: implications for the oceanic mantle below Hawaii. Journal of Petrology, 1982, 23: 447-504. [41] Fitton, J.C., Dunlop, H.M., The Cameroon LineWest Africa and its bearing on the origin of oceanic and continental alkali basalt. Earth Planet. Sci. Lett. 1985, 72: 23-38. [42] McDonough, Z.F., Sun S.S. The composition of the Earth. Chemical Geology, 1995, 120: 223-253. [41] Clocchiatti, R., Schiano, P., Ottolini, L., Bottazzi, P. Earlier alkaline and transitional magmatic pulsation of Mt. Etna volcano. Earth and Planetary Science Letters, 1998, 163: 399-407. [44] Villemant, B., Joron, J.L., Jaffrezic, H., Treuil, M., Maury R. C. Brousse, R. Cristallisation fractionnée d’un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, France), II Géochimie. Bull. Mineral, 1980, 103, 2: 267-286. [45] Maury, R.C., Brousse, R., Villemant, B., Joron, J.L., Jaffrezic, H., Treuil, M. Cristallisation fractionnée d’un magma basaltique alcalin: la série de la Chaîne des Puys (Massif Central, France) I, Petrologie. Bull. Mineral, 1980, 103, 2: 250-266. [46] Rollinson, H. R. Using geochemical data: evolution, presentation, interpretation. Geochemistry series. Longman scientific and technical, New York, 1993: 352. [47] Harvey Blatt, Tracy, R.J., Brent, E.O. Petrology: igneous, sedimentary and metamorphic. 3rd ed New York: W.H. Freeman, 2006: 530. [48] Hardarson, B.S., Fitton, J.G. Increased mantle melting beneath snaefellsjokull volcano during Late Pleistocene deglaciation. Nature, 1991, 353: 62-64. [49] Zindler, A. Hart S., Chemical geodynamics. Annual Reviews of Earth and Planetary Science, 1986, 14: 493-571. [50] Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 1988, 90: 297-314. [51] Woodhead, J.D. Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook - Austral hotspot. Journal of Volcanology and Geothermal Research, 1996, 72: 1-19. [52] Halliday, A.N., Davidson, J.P., Holden, P., De Wolf, C.P., Lee, D.C., Fitton J.G. Trace elements in plume and the origin of HIMU mantle beneath the Cameroon Line, Nature, 1990, 347: 523-528. [53] Haase M.K., Devey W.C. The petrology and geochemestry of Vesteris Seamont, Greenland basin-an intraplate alkaline volcano of Non-plume origin. J. Petrol., 1994, 35(2): 295-328. [54] Sato H., Aramaki S., Kusakabe M., Hirabayashi J.L., Yuji Sano, Nojiri Y., Tchoua F. Geochemical difference of basalts between polygenetic and monogenetic volcanoes in the central part of the Cameroon volcanic Line, Geochemical Journal Japan, 1990, 24: 357-370.