Identification of Active Component of Hachimi-jio-gan Ameliorating Diabetic Nephropathy
Source: By:Chan Hum Park, Takashi Tanaka, Takako Yokozawa
DOI: https://doi.org/10.30564/jim.v11i1.4112
Abstract:[1] Zoja, C., Xinaris, C., Macconi, D., 2020. Diabetic nephropathy: novel molecular mechanisms and ther-apeutic targets. Front Pharmacol. 11, 586892. [2] Wolf, G., 2004. New insights into the pathophysiology of diabetic nephropathy: from haemodynamics to molecular pathology. Eur J Clin Invest. 34(12), 785-796. [3] Lim, A., 2014. Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis. 7, 361-381. [4] Heerspink, H.J.L., de Zeeuw, D., 2011. The kidney in type 2 diabetes therapy. Rev Diabet Stud. 8, 392-402. [5] Fried, L.F., Emanuele, N., Zhang, J.H., Brophy, M., Conner, T.A., Duckworth, W., Leehey, D.J., McCullough, P.A., O’Connor, T.,Palevsky, P.M., Reilly, R.F., Seliger, S.L., Warren, S.R., Watnick, S., Peduzzi, P., Guarino, P., 2013. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 369(20), 1892-1903. [6] Yamout, H., Lazich, I., Bakris, G.L., 2014. Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease. Adv Chronic Kidney Dis. 21(3), 281-286. [7] Alicic, R.Z., Neumiller, J.J., Johnson, E.J., Dieter, B., Tuttle, K.R., 2019. Sodium-glucose cotransporter 2 inhibition and diabetic kidney disease. Diabetes. 68(2), 248-257. [8] Watanabe, K., Matsuura, K., Gao, P., Hottenbacher, L., Tokunaga, H., Nishimura, K., Imazu, Y., Reissenweber, H., Witt, C.M., 2011. Traditional Japanese Kampo medicine: clinical research between modernity and traditional medicine-The state of research and methodological suggestions for the future. Evid Based Complement Alternat Med. Article ID 513842. [9] Yagi, H., Sato, R., Nishio, K., Arai, G., Soh, S., Okada, H., 2015. Clinical efficacy and tolerability of two Japanese traditional herbal medicines, Hachimijio-gan and Gosha-jinki-gan, for lower urinary tract symptoms with cold sensitivity. J Trad Complement Med. 5, 258-261. [10] Kondo, T., 2016. Kidneys in Oriental and Occidental medicine. Integr Med Int. 3, 64-67. [11] Lee, A.L., Chen, B.C., Mou, C.H., Sun, M.F., Yen, H.R., 2016. Association of traditional Chinese medicine therapy and the risk of vascular complications in patients with type II diabetes mellitus. Medicine. 95(3), 1-7. [12] Yokozawa, T., Yamabe, N., Cho, E.J., Nakagawa, T., Oowada, S., 2004. A study on the effects to diabetic nephropathy of Hachimi-jio-gan in rats. Nephron Exp Nephrol. 97(2), e38-e48. [13] Yamabe, N., Yokozawa, T., 2006. Activity of the Chinese prescription Hachimi-jio-gan against renal damage in the Otsuka Long-Evans Tokushima Fatty rat: a model of human type 2 diabetes mellitus. J Pharm Pharmacol. 58, 535-545. [14] Mau, J.L., Chen, C.P., Hsieh, P.C., 2001. Antimicrobial effect of extracts from Chinese chive, cinnamon, and corni fructus. J Agric Food Chem. 49(1), 183-188. [15] Chang, J.S., Chiang, L.C., Hsu, F.F., Lin, C.C., 2004. Chemoprevention against hepatocellular carcinoma of Cornus officinalis in vitro. Am J Chin Med. 32(5), 717-725. [16] Liou, S.S., Liu, I.M., Hsu, S.F., Cheng, J.T., 2004. Corni fructus as the major herb of Die-Huang-Wan for lowering plasma glucose in Wistar rats. J Pharm Pharmacol. 56(11), 1443-1447. [17] Vareed, S.K., Reddy, M.K., Schutzki, R.E., Nair, M.G., 2006. Anthocyanins in Cornus alternifolia, Cornus controversa, Cornus kousa and Cornus florida fruits with health benefits. Life Sci. 78(7), 777-784. [18] Yamabe, N., Kang, K.S., Goto, E., Tanaka, T., Yokozawa, T., 2007. Beneficial effect of Corni Fructus, a constituent of Hachimi-jio-gan, on advanced glycation end-product-mediated renal injury in streptozotocin-treated diabetic rats. Biol Pharm Bull. 30(3), 520-526. [19] Yamabe, N., Kang, K.S., Matsuo, Y., Tanaka, T., Yokozawa, T., 2007. Identification of antidiabetic effect of iridoid glycosides and low molecular weight polyphenol fractions of Corni Fructus, a constituent of Hachimi-jio-gan, in streptozotocin-induced diabetic rats. Biol Pharm Bull. 30(7), 1289-1296. [20] Xu, H.Q., Hao, H.P., 2004. Effects of iridoid total glycoside from Cornus officinalis on prevention of glomerular overexpression of transforming growth factor beta 1 and matrixes in an experimental diabetes model. Biol Pharm Bull. 27(7), 1014-1018. [21] Xu, H.Q., Hao, H.P., Zhang, X., Pan, Y., 2004. Morroniside protects cultured human umbilical vein endothelial cells from damage by high ambient glucose. Acta Pharmacol Sin. 25(4), 412-415. [22] Xu, H., Shen, J., Liu, H., Shi, Y., Li, L., Wei, M., 2006. Morroniside and loganin extracted from Cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can J Physiol Pharmacol. 84(12), 1267-1273. [23] Yokozawa, T., Yamabe, N., Kim, H.Y., Kang, K.S., Hur, J.M., Park, C.H., Tanaka, T., 2008. Protective effects of morroniside isolated from Corni Fructus against renal damage in streptozotocin-induced diabetic rats. Biol Pharm Bull. 31(7), 1422-1428. [24] Yokozawa, T., Kang, K.S., Park, C.H., Noh, J.S., Yamabe, N., Shibahara, N., Tanaka, T., 2010. Bioactive constituents of Corni Fructus: The therapeutic use of morroniside, loganin, and 7-O-galloyl-D-sedoheptulose as renoprotective agents in type 2 diabetes. Drug Discov Ther. 4(4), 223-234. [25] Yamabe, N., Noh, J.S., Park, C.H., Kang, K.S., Shibahara, N., Tanaka, T., Yokozawa, T., 2010. Evaluation of loganin, iridoid glycoside from Corni Fructus, on hepatic and renal glucolipotoxicity and inflammation in type 2 diabetic db/db mice. Eur J Pharmacol. 648, 179-187. [26] Landis-Piwowar, K.R., Huo, C., Chen, D., Milacic, V., Shi, G., Chan, T.H., Dou, Q.P., 2007. A novel prodrug of the green tea polyphenol (-)-epigallocatechin-3-gallate as a potential anticancer agent. Cancer Res. 67(9), 4303-4310. [27] Mandel, S., Weinreb, O., Amit, T., Youdim, M.B.H., 2004. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem. 88(6), 1555-1569. [28] Vinson, J.A., Proch, J., Bose, P., Muchler, S., Taffera, P., Shuta, D., Samman, N., Agbor, G.A., 2006. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American Diets. J Agric Food Chem. 54(21), 8071-8076. [29] Kowluru, R.A., Kanwar, M., 2007. Effects of curcumin on retinal oxidative stress and inflammation in diabetes. Nutr Metab. 4(8), 1-8. [30] Baur, J.A., Pearson, K.J., Price, N.L., Jamieson, H.A., Lerin, C., Kalra, A., Prabhu, V.V., Allard, J.S., Lopez-Lluch, G., Lewis, K., Pistell, P.J., Poosala, S., Becker, K.G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K.W., Spencer, R.G., Lakatta, E.G., Couteur, D.L., Shaw, R.J., Navas, P., Puigserver, P., Ingram, D.K., de Cabo, R., Sinclair, D.A., 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 444(7117), 337-342. [31] Yamabe, N., Yokozawa, T., Oya, T., Kim, M., 2006. Therapeutic potential of (-)-epigallocatechin 3-O-gallate on renal damage in diabetic nephropathy model rats. J Pharmacol Exp Ther. 319(1), 228-236. [32] Yamabe, N., Kang, K.S., Park, C.H., Tanaka, T., Yokozawa, T., 2009. 7-O-Galloyl-D-sedoheptulose is a novel therapeutic agent against oxidative stress and advanced glycation endproducts in the diabetic kidney. Biol Pharm Bull. 32(4), 657-664.