Biological Invasions in Marine Ecosystems: Amphipods (Crustacea: Amphipoda) as a Model Group
Source: By:M. Pilar Cabezas
DOI: https://doi.org/10.30564/jms.v4i1.4564
Abstract: References:[1] Pyšek, P., Hulme, P.E., Simberloff, D., et al., 2020. Scientists warning on invasive alien species. Biological Reviews. 95, 1511-1534. DOI: https://doi.org/10.1111/brv.12627 [2] Diagne, C., Leroy, B., Vaissière, A.C., et al., 2021. High and rising economic costs of biological invasions worldwide. Nature. 592, 571-576. DOI: https://doi.org/10.1038/s41586-021-03405-6 [3] Seebens, H., Blackburn, T.M., Dyer, E.E., et al., 2017. No saturation in the accumulation of alien species worldwide. Nature Communications. 8, 14435. DOI: https://doi.org/10.1038/ncomms14435 [4] Hulme, P.E., 2021. Unwelcome exchange: International trade as a direct and indirect driver of biological invasions worldwide. One Earth. 4, 666-679. DOI: https://doi.org/10.1016/j.oneear.2021.04.015 [5] Simberloff, D., Martin, J.L., Genovesi, P., et al., 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology and Evolution. 28, 58-66. DOI: https://doi.org/10.1016/j.tree.2012.07.013 [6] Martínez-Laiz, G., Ros, M., Guerra-García, J.M., et al., 2020. Scientific collaboration for early detection of invaders results in a significant update on estimated range: lessons from Stenothoe georgiana Bynum & Fox 1977. Mediterranean Marine Science. 21, 464-481. DOI: https://doi.org/10.12681/mms.22583 [7] Carlton, J.T., 2011. The global dispersal of marine and estuarine crustaceans. In: Galil, B., Clark, P.F., Carlton, J.T. (eds.) In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts. Invading Nature - Springer Series in Invasion Ecology. 6, 3-23. [8] Hänfling, B., Edwards, F., Gherardi, F., 2011. Invasive alien crustacea: dispersal, establishment, impact and control. Biological Control. 56, 573-595. DOI: https://doi.org/10.1007/s10526-011-9380-8 [9] Woods, C.M.C., 2009. Caprellid amphipods: An overlooked marine finfish aquaculture resource? Aquaculture. 289, 199-211. DOI: https://doi.org/10.1016/j.aquaculture.2009.01.018 [10] Guerra-García, J.M., 2001. Habitat use of the Caprellidea (Crustacea: Amphipoda) from Ceuta, North Africa. Ophelia. 55, 27-38. DOI: https://doi.org/10.1080/00785236.2001.10409471 [11] Guerra-García, J.M., Baeza-Rojano, E., Cabezas, M.P., et al., 2011. Vertical distribution and seasonality of peracarid crustaceans associated with intertidal macroalgae. Journal of Sea Research. 65, 256-264. DOI: https://doi.org/10.1016/j.seares.2010.12.001 [12] Thiel, M., Guerra-García, J.M., Lancellotti, D.A., et al., 2003. The distribution of littoral caprellids (Crustacea: Amphipoda: Caprellidea) along the Pacific Coast of continental Chile. Revista Chilena de Historia Natural. 76, 297-312. DOI: http://dx.doi.org/10.4067/S0716-078X2003000200014 [13] Ros, M., Guerra-García, J.M., González-Macías, M., et al., 2013. Influence of fouling communities on the establishment success of alien caprellids (Crustacea: Amphipoda) in Southern Spain. Marine Biology Research. 9, 261-273. DOI: https://doi.org/10.1080/17451000.2012.739695 [14] Martínez-Laiz, G., Ulman, A., Ros, M., et al., 2019. Is recreational boating a potential vector for non-indigenous peracarid crustaceans in the Mediterranean Sea? A combined biological and social approach. Marine Pollution Bulletin. 140, 403-415. DOI: https://doi.org/10.1016/j.marpolbul.2019.01.050 [15] Ros, M., Navarro-Barranco, C., González-Sánchez, M., et al., 2020. Starting the stowaway pathway: the role of dispersal behavior in the invasión success of low-mobile marine species. Biological Invasions. 22, 2797-2812. DOI: https://doi.org/10.1007/s10530-020-02285-7 [16] Grabowski, M., Bacela, E.K., Konopacka, A., 2007. How to be an invasive gammarid (Amphipoda: Gammaroidea) comparison of life history traits. Hydrobiologia. 590, 75-84. DOI: https://doi.org/10.1007/s10750-007-0759-6 [17] Ros, M., Vázquez-Luis, M., Guerra-García, J.M., 2015. Environmental factors modulating the extent of impact in coastal invasions: the case of a widespread invasive caprellid (Crustaceca: Amphipoda) in the Iberian Peninsula. Marine Pollution Bulletin. 98, 247-258. DOI: https://doi.org/10.1016/j.marpolbul.2015.06.041 [18] Cuthbert, R.N., Kotronaki, S.G., Dick, J.T.A., et al., 2020. Salinity tolerance and geographical origin predict global alien amphipod invasions. Biology Letters. 16, 20200354. DOI: https://doi.org/10.1098/rsbl.2020.0354 [19] Ros, M., Guerra-García, J.M., Lignot, J.H., et al., 2021. Environmental stress responses in sympatric congeneric crustaceans: explaining and predicting the context-dependencies of invader impacts. Marine Pollution Bulletin. 170, 112621. DOI: https://doi.org/10.1016/j.marpolbul.2021.112621 [20] Marchini, A., Cardeccia, A., 2017. Alien amphipods in a sea of troubles: cryptogenic species unresolved taxonomy and overlooked introductions. Marine Biology. 164, 69. DOI: https://doi.org/10.1007/s00227-017-3093-1 [21] Longenecker, K., 2021. First record of two sublittoral amphipods from Hawaii. Marine Biodiversity Records. 14, 9. DOI: https://doi.org/10.1186/s41200-021-00205-9 [22] Martínez-Laiz, G., Guerra-García, J.M., Ros, M., et al., 2021. Hitchhiking northwards: on the presence of the invasive skeleton shrimp Caprella scaura in the UK. Marine Biodiversity. 51, 78. DOI: https://doi.org/10.1007/s12526-021-01222-8 [23] Pilgrim, E.M., Darling, J.A., 2010. Biodiversity Research: Genetic diversity in two introduced biofouling amphipods (Ampithoe valida & Jassa marmorata) along the Pacific North American coast: Investigation into molecular identification and cryptic diversity. Diversity and Distributions. 16, 827-839. DOI: https://doi.org/10.1111/j.1472-4642.2010.00681.x [24] Ros, M., Guerra-García, J.M., Navarro-Barranco, C., et al., 2014. The spreading of the non-native caprellid (Crustacea: Amphipoda) Caprella scaura Templeton, 1836 into southern Europe and northern Africa: A complicated taxonomic history. Mediterranean Marine Science. 15, 145-155. DOI: https://doi.org/10.12681/mms.469 [25] Baird, H.P., Miller, K.J., Stark, J., 2011. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antartic amphipods. Molecular Ecology. 20, 3439-3454. DOI: https://doi.org/10.1111/j.1365-294X.2011.05173.x [26] Cabezas, M.P., Xavier, R., Branco, M., et al., 2014. Invasion history of Caprella scaura Templeton, 1836 (Amphipoda: Caprellidae) in the Iberian Peninsula: multiple introductions revealed by mitochondrial sequence data. Biological Invasions. 16, 2221-2245. DOI: https://doi.org/10.1007/s10530-014-0660-y [27] Mohrbeck, I., Horton, T., Jażdżewska, A.M., et al., 2021. DNA barcoding and cryptic diversity of deep-sea scavenging amphipods in the Clarion-Clipperton Zone (Eastern Equatorial Pacific). Marine Biodiversity. 51, 26. DOI: https://doi.org/10.1007/s12526-021-01170-3 [28] Darling, J.A., Galil, B.S., Carvalho, G.R., et al., 2017. Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. Marine Policy. 85, 54-64. DOI: https://doi.org/10.1016/j.marpol.2017.08.014 [29] Viard, F., Roby, C., Turon, X., et al., 2019. Cryptic diversity and database errors challenge non-indigenous species surveys: an illustration with Botrylloides spp. in the English Channel and Mediterranean Sea. Frontiers in Marine Science. 6, 615. DOI: https://doi.org/10.3389/fmars.2019.00615 [30] Rey, A., Basurko, O.C., Rodriguez-Ezpeleta, N., 2020. Considerations for metabarcoding-based port biological baseline surveys aimed at marine nonindigenous species monitoring and risk assessments. Ecology and Evolution. 10, 2452-2465. DOI: https://doi.org/10.1002/ece3.6071