Recognition Methods of Geometrical Images of Automata Models of Systems in Control Problem
Source:
By:Anton Epifanov
[1] McCulloch W.S., Pitts W. (1943). A logical calculus of the ideas immanent in nervous activity [J]. Bulletin of Math. Biophysics. 5:115-133.
[2] Agibalov G.P. (1993). Discrete automata on semilattices [M]. Tomsk.
[3] Aizerman M.A. et al. (1963). Logic. Automatons. Algorithms [C].. Fizmatgiz.
[4] Aperiodic automata [C]. (1974). Moscow, Nauka.
[5] Arbib M. (1966). Automata theory and control theory: a rapprochement.Automatica [C], 3:161-189.
[6] Arbib M. (1967). Tolerance automata . Kybernetic[J], 3:223-233.
[7] Achasova S.M. (1978). Algorithms for the synthesis of automata on programmable matrices [M]. Moscow, Radio and Communication.
[8] Aho A., Hopcroft J., Ullman J. (1979). Construction and analysis of computational algorithms [M]. Moscow, Mir.
[9] Neumann J. (1966). Theory of Self-Reproducing Automata [M]. University of Illinois Press.
[10] Tverdokhlebov, V.A. (2008). The geometrical images of laws of functioning of finite state machines [M]. Science book, Saratov.
[11] Tverdokhlebov, V.A. (2005). The geometrical images of the finite state machines [J], Proceedings of Saratov State Univercity (a New series), 5:141-153.
[12] Epifanov, A.S. (2014). Models and methods for analysis and redefining the laws of functioning of discrete dynamic systems [M], Publishing Center Science, Saratov.
[13] A. Gill (1962). Introduction to the Theory of Finite-state Machines [M]. McGraw-Hill.
[14] Epifanov A.S. (2017). Redefinition, recognition and analysis of automatic models of systems by their geometric images [C]. Proceedings of MLSD‘2017 conference: Management of Large-Scale Systems Development (MLSD‘2017).
[15] http://oeis.org/.
[16] Steinberg B. (2001). Finite state automata: a geometric approach [J]. Transactions of the american mathematical society. 9:3409-3464.
[17] J¨urgensena H., Staigerc L., Hideki Yamasakid. (2007). Finite automata encoding geometric figures [J]. Theoretical Computer Science. 381: 33-43.
[18] Schneider S. (2019). Deterministic pushdown automata as specifications for discrete event supervisory control in Isabelle [D]. Technische Universität Berlin.
[19] Sergey Yu. Melnikov, Konstantin E. Samouylov. (2020) Polygons characterizing the joint statistical properties of the input and output sequences of the binary shift register [C]. ICFNDS ‚20: The 4th International Conference on Future Networks and Distributed Systems (ICFNDS). Article No.: 10 Pages 1–6 https://doi.org/10.1145/3440749.3442601.
[20] Rosin P., Adamatzky A., Xianfang Sun. (2014). Cellular automata in image processing and geometry [C], Springer.
[21] Su, R., van Schuppen, J.H., Rooda, J.E., and Hofkamp, A.T. (2010). Nonconflict check by using sequential automaton abstractions based on weak observation equivalence. Automatica, 46(6), 968-978.
[22] www.xilinx.com.
