The Importance of Ecological Redundancy for Ecosystems Restoration
Source: By:Author(s)
DOI: https://doi.org/10.30564/re.v3i2.2957
Abstract:Restoration ecology is a multidisciplinary science that exchanges several concepts with other scientific fields to improve its practices. In this article, I discuss the ecological redundancy concept and its implications and applications on ecological restoration. Ecological redundancy was coined in the early 1990s to characterize those species that play similar (equivalent) functions in the ecosystem. The concept made it possible to segregate species into functional groups that operate in maintaining the system. I searched the literature and found that although some restoration models naturally consider this concept, studies in areas undergoing restoration which directly measure and test the ecological redundancy are still rare (n = 14). I provide evidence that distinguishing redundant species and identifying key species is feasible for ecological restoration. Additionally, I suggest that redundancy should also be part of the restoration monitoring, for example, by checking if functional groups have been recovered. Theory predicts that if ecological redundancy is correctly incorporated in restoration, projects with more chances of success will be created because redundancy tends to increase ecosystem resilience. Resilience is a crucial factor for restoration sustainability in a changing environment.
References:[1]SER - Society for Ecological Restoration International Science & Policy Working Group. The SER International Primer on Ecological Restoration. Published 2004. Accessed December 6, 2020. https://www.ser.org/page/SERDocuments. [2]Young TP. Restoration ecology and conservation biology. Biol Conserv. 2000;92(1):73-83. DOI: https://doi.org/10.1016/S0006-3207(99)00057-9. [3]Walker B. Biodiversity and ecological redundancy. Conserv Biol. 1992;6(1):18-23. DOI: https://doi.org/10.1046/j.1523-1739.1992.610018.x. [4]Primack RB, Rodrigues E. Biologia Da Conservação (Conservation Biology). 1st ed. Planta; 2001. [5]Spehn EM, Scherer-Lorenzen M, Schmid B, et al. The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen. Oikos. 2002;98(2):205-218. DOI: https://doi.org/10.1034/j.1600-0706.2002.980203.x. [6]Mouillot D, Bellwood DR, Baraloto C, et al. Rare species support vulnerable functions in high-diversity ecosystems. Mace GM, ed. PLoS Biol. 2013;11(5):e1001569. DOI: https://doi.org/10.1371/journal.pbio.1001569. [7]Barott KL, Rodriguez-Brito B, Janouškovec J, et al. Microbial diversity associated with four functional groups of benthic reef algae and the reef-building coral Montastraea annularis. Environ Microbiol. 2011;13(5):1192-1204. DOI: https://doi.org/10.1111/j.1462-2920.2010.02419.x. [8]Herrera CM, Jordano P, Lopez-Soria L, Amat JA. Recruitment of a mast-fruiting, bird-dispersed tree: Bridging frugivore activity and seedling establishment. Ecol Monogr. 1994;64(3):315-344. DOI: https://doi.org/10.2307/2937165. [9]Walker B. Conserving biological diversity through ecosystem resilience. Conserv Biol. 1995;9(4):747- 752. DOI: https://doi.org/10.1046/j.1523-1739.1995.09040747.x. [10]Rosenfeld JS. Functional redundancy in ecology and conservation. Oikos. 2002;98(1):156-162. DOI: https://doi.org/10.1034/j.1600-0706.2002.980116.x. [11]Cowling RM, Mustart PJ, Laurie H, Richards MB. Species diversity; functional diversity and functional redundancy in fynbos communities. S Afr J Sci. 1994;90:333-337. Accessed March 4, 2021. https://journals.co.za/doi/pdf/10.10520/AJA00382353_9103. [12]Chapin FS, Schulze E-D, Mooney HA. Biodiversity and ecosystem processes. Trends Ecol Evol. 1992;7(4):107-108. DOI: https://doi.org/10.1016/0169-5347(92)90141-W. [13]Richardson DM, Cowling RM. Biodiversity and ecosystem processes: Opportunities in Mediterranean-type ecosystems. Trends Ecol Evol. 1993;8(3):79-81. DOI: https://doi.org/10.1016/0169-5347(93)90054-S. [14]Gitay H, Wilson JB, Lee WG. Species redundancy:A redundant concept? J Ecol. 1996;84(1):121. DOI: https://doi.org/10.2307/2261706. [15]Naeem S. Species redundancy and ecosystem reliability. Conserv Biol. 1998;12(1):39-45. DOI: 10.1111/j.1523-1739.1998.96379.x. [16]Young TP, Petersen DA, Clary JJ. The ecology of restoration: historical links, emerging issues and unexplored realms. Ecol Lett. 2005;8(6):662-673. DOI: https://doi.org/10.1111/j.1461-0248.2005.00764.x. [17]Choi YD, Temperton VM, Allen EB, et al. Ecological restoration for future sustainability in a changing environment. Écoscience. 2008;15(1):53-64. [18] Palmer MA, Ambrose RF, Poff NL. Ecological theory and community restoration ecology. Restor Ecol. 1997;5(4):291-300. DOI: https://doi.org/10.1046/j.1526-100X.1997.00543.x. [19] Brancalion PHS, Rodrigues RR, Gandolfi S, et al. Legal instruments can enhance high-diversity tropical forest restoration. Rev Árvore. 2010;34(3):455- 470. DOI: https://doi.org/10.1590/S0100-67622010000300010. [20] Zipparro VB, Guilherme FAG, Almeida-Scabbia RJ, Morellato LPC. Levantamento florístico de Floresta Atlântica no sul do Estado de São Paulo, Parque Estadual Intervales, Base Saibadela. Biota Neotrop. 2005;5(1):127-144. DOI: https://doi.org/10.1590/S1676-06032005000100015. [21] Trujillo-Miranda AL, Toledo-Aceves T, López-Barrera F, Gerez-Fernández P. Active versus passive restoration: Recovery of cloud forest structure, diversity and soil condition in abandoned pastures. Ecol Eng. 2018;117:50-61. DOI: https://doi.org/10.1016/j.ecoleng.2018.03.011 [22] Camargo JLC, Ferraz IDK, Imakawa AM. Rehabilitation of degraded areas of Central Amazonia using direct sowing of forest tree seeds. Restor Ecol. 2002;10(4):636-644. DOI: https://doi.org/10.1046/j.1526-100X.2002.01044.x. [23] Souza FM, Batista JLF. Restoration of seasonal semideciduous forests in Brazil: influence of age and restoration design on forest structure. For Ecol Manage. 2004;191(1):185-200. DOI: https://doi.org/10.1016/j.foreco.2003.12.006. [24] Nave AG, Rodrigues RR. Combination of species into filling and diversity groups as forest restoration methodology. In: Rodrigues RR, Martins SV, Gandolfi S, eds. High Diversity Forest Restoration in Degraded Areas: Methods and Projects in Brazil. Nova Science Publishers; 2007:103-126. [25] Bradshaw A. Restoration of mined lands—using natural processes. Ecol Eng. 1997;8(4):255-269. DOI: https://doi.org/10.1016/S0925-8574(97)00022-0. [26] Wunderle JR JM. The role of animal seed dispersal in accelerating native forest regeneration on degraded tropical lands. For Ecol Manage. 1997;99(1):223-235. DOI: https://doi.org/10.1016/S0378-1127(97)00208-9. [27] Devoto M, Bailey S, Craze P, Memmott J. Understanding and planning ecological restoration of plant-pollinator networks. Ecol Lett. 2012;15(4):319-328. DOI: https://doi.org/10.1111/j.1461-0248.2012.01740.x. [28] Garcia LC, Cianciaruso MV, Ribeiro DB, dos Santos FAM, Rodrigues RR. Flower functional trait responses to restoration time. Acosta A, ed. Appl Veg Sci. 2015;18(3):402-412. DOI: https://doi.org/10.1111/avsc.12163. [29] Fleishman E, Mcdonal N, Nally R Mac, Murphy DD, Walters J, Floyd T. Effects of floristics, physiognomy and non-native vegetation on riparian bird communities in a Mojave Desert watershed. J Anim Ecol. 2003;72(3):484-490. DOI: https://doi.org/10.1046/j.1365-2656.2003.00718.x. [30] Mayer PM, Megard RO, Galatowitsch SM. Plankton respiration and biomass as functional indicators of recovery in restored prairie wetlands. Ecol Indic. 2004;4(4):245-253. DOI: https://doi.org/10.1016/j.ecolind.2004.03.005. [31] Hooper DU, Chapin FS, Ewel JJ, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr. 2005;75(1):3- 35. DOI: https://doi.org/10.1890/04-0922. [32] United Nations. UN Decade on Ecosystem Restoration 2021-2030. United Nations Environment Programme. Published 2021. Accessed January 19, 2021. https://www.decadeonrestoration.org/. [33] Hawkins BA, Field R, Cornell H V., et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology. 2003;84(12):3105-3117. DOI: https://doi.org/10.1890/03-8006. [34] Temperton VM, Hobbs R j. The search for ecological assembly rules and its relevance to restoration ecology. In: Temperton VM, Hobbs RJ, Nuttle T, Halle S, eds. Assembly Rules and Restoration Ecology: Bridging the Gap between Theory and Practice. Island Press; 2004:34-54. [35] López ASA, González Rodríguez A, Geada López G. Tipos funcionales de plantas según su respuesta a las perturbaciones en un bosque semideciduo micrófilo costero de Cuba Oriental. Bosque (Valdivia). 2016;37(1):135-145.DOI: 10.4067/S0717-92002016000100013. [36] Ruiz-Jaen MC, Aide TM. Restoration success: How is it being measured? Restor Ecol. 2005;13(3):569- 577. DOI: https://doi.org/10.1111/j.1526-100X.2005.00072.x. [37] Wortley L, Hero J-M, Howes M. Evaluating Ecological Restoration Success: A Review of the Literature. Restor Ecol. 2013;21(5):537-543. DOI: https://doi.org/10.1111/rec.12028. [38] Williams NM. Restoration of nontarget species: Bee communities and pollination function in riparian forests. Restor Ecol. 2011;19(4):450-459. DOI: https://doi.org/10.1111/j.1526-100X.2010.00707.x. [39] Gann GD, McDonald T, Walder B, et al. International principles and standards for the practice of ecological restoration. Second edition. Restor Ecol. 2019;27(S1):S1-S46. DOI: https://doi.org/10.1111/rec.13035. [40] Suding KN. Toward an era of restoration in ecology: Successes, failures, and opportunities ahead. Annu Rev Ecol Evol Syst. 2011;42(1):465-487. DOI: https://doi.org/10.1146/annurev-ecolsys-102710-145115.