Machine Learning and Pattern Analysis Identify Distinctive Influences from Long-term Weekly Net Ecosystem Exchange at Four Deciduous Woodland Locations
Source: By:The author(s)
DOI: https://doi.org/10.30564/re.v4i4.5279
Abstract:A methodology integrating correlation, regression (MLR), machine learning (ML), and pattern analysis of long-term weekly net ecosystem exchange (NEE) datasets are applied to four deciduous broadleaf forest (DBF) sites forming part of the AmeriFlux (FLUXNET2015) database. Such analysis effectively characterizes and distinguishes those DBF sites for which long-term NEE patterns can be accurately predicted using the recorded environmental variables, from those sites cannot be so delineated. Comparisons of twelve NEE prediction models (5 MLR; 7 ML), using multi-fold cross-validation analysis, reveal that support vector regression generates the most accurate and reliable predictions for each site considered, based on fits involving between 16 and 24 available environmental variables. SVR can accurately predict NEE for datasets for DBF sites US-MMS and US-MOz, but fail to reliably do so for sites CACbo and MX-Tes. For the latter two sites the predicted versus recorded NEE weekly data follow a Y ≠ X pattern and are characterized by rapid fluctuations between low and high NEE values across leaf-on seasonal periods. Variable influences on NEE, determined by their importance to MLR and ML model solutions, identify distinctive sets of the most and least influential variables for each site studied. Such information is valuable for monitoring and modelling the likely impacts of changing climate on the ability of these sites to serve as long-term carbon sinks. The periodically oscillating NEE weekly patterns distinguished for sites CA-Cbo and MX-Tes are not readily explained in terms of the currently recorded environmental variables. More detailed analysis of the biological processes at work in the forest understory and soil at these sites are recommended to determine additional suitable variables to measure that might better explain such fluctuations.
References:[1]Baldocchi, D.D., Hicks, B.B., Meyers, T.P., 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micro meteorological methods. Ecology. 69, 1331-1340. [2]Swinbank, W.C., 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology. 8(3), 135- 145. DOI: https://doi.org/10.1175/1520-0469(1951)0082.0.CO;2 [3]Valentini, R. (editor), 2003. Fluxes of carbon, water and energy of European forests. Ecological studies. Springer : Berlin, Heidelberg. DOI: https://doi.org/10.1007/978-3-662-05171-9 [4]Goulden, M.L., Munger, W., Fan, S.M., et al., 1996. Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology. 2(3), 169-182. DOI: https://doi.org/10.1111/j.1365-2486.1996.tb00070.x [5]Barnhart, B.L., Eichinger, W.E., Prueger, J.H., 2012. A new eddy-covariance method using empirical mode decomposition. Boundary Layer Meteorology. 145(2), 369-382. DOI: https://doi.org/10.1007/s10546-012-9741-6 [6]Baldocchi, D.D., 2020. How eddy covariance flux measurements have contributed to our understanding of global change biology. Global Change Biology. 26, 242-260. [7]Baldocchi, D., Chu, H., Reichstein, M., 2018. Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agriculture and Forest Meteorology. 249, 520-533. DOI: https://doi.org/10.1016/j.agrformet.2017.05.015 [8]Monteith, J.L., 1972. Solar radiation and productivity in tropical ecosystems. Journal of Applied Ecology. 9(3), 747. DOI: https://doi.org/10.2307/2401901 [9]Saigusa, N., Yamamoto, S., Murayama, S., et al., 2002. Gross primary production and net ecosystem exchange of a cool-temperate deciduous forest estimated by the eddy covariance method. Agricultural and Forest Meteorology. 112(3-4), 203-215. DOI: https://doi.org/10.1016/S0168-1923(02)00082-5 [10]Sellers, P.J., Berry, J.A., Collatz, G.J., et al., 1992. Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sensing of Environment. 42(3), 187-216. DOI: https://doi.org/10.1016/0034-4257(92)90102-P [11]Chu, H., Baldocchi, D.D., Poindexter, C., et al., 2018. Temporal dynamics of aerodynamic canopy height derived from eddy covariance momentum flux data across North American flux networks. Geophysical Research Letters. 45, 9275-9287. DOI: https://doi.org/10.1029/2018GL079306 [12]Gough, C.M., Curtis, P.S., Hardiman, B.S., et al., 2016. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests. Ecosphere. 7(6), e01375. DOI: https://doi.org/10.1002/ecs2.1375 [13]Holtmann, A., Huth, A., Pohl, F., et al., 2021. Carbon sequestration in mixed deciduous forests: The influence of tree size and species composition derived from model experiments. Forests. 12, 726. DOI: https://doi.org/10.3390/f12060726 [14]Falge, E., Aubinet, M., Bakwin, P., et al., 2005. FLUXNET Marconi conference gap-filled flux and meteorology data, 1992–2000 [Internet] [cited 2023 Jan 15]. Available from: https://catalog.data.gov/dataset/fluxnet-marconi-conference-gap-filled-flux-and-meteorology-data-1992-2000. [15]Neog, P., Kumar, A., Srivastava, A.K., et al., 2005. Estimation and application of Bowen ratio fluxes over crop surfaces—An overview. Journal of Agricultural Physics. 5(1), 36-45. [16]Yuan, W., Liu, S., Zhou, G., et al., 2007. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agricultural and Forest Meteorology. 143(3-4), 189-207. DOI: https://doi.org/10.1016/J.AGRFORMET.2006.12.001 [17]Ge, S., Smith, R.G., Jacovides, C.P., et al., 2011. Dynamics of photosynthetic photon flux density (PPFD) and estimates in coastal northern California. Theoretical and Applied Climatology. 105, 107-118.DOI: https://doi.org/10.1007/s00704-010-0368-6 [18]Kia, S.H., Milton, E.J., 2015. Hyper-temporal remote sensing for scaling between spectral indices and flux tower measurements. Applied Ecology and Environmental Research. 13(2), 465-487. DOI: https://doi.org/10.15666/aeer/1302_465487 [19]Tucker, C.J., 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment. 8(2), 127-150. [20]Tang, X., Wang, Z., Liu, D., et al., 2012. Estimating the net ecosystem exchange for the major forests in the northern United States by integrating MODIS and AmeriFlux data. Agricultural and Forest Meteorology. 156, 75-84. DOI: https://doi.org/10.1016/j.agrformet.2012.01.003 [21]Niu, B., He, Y., Zhang, X., et al., 2016. Tower-based validation and improvement of MODIS gross primary production in an alpine swamp meadow on the Tibetan Plateau. Remote Sensing. 8(7), 592. DOI: https://doi.org/10.3390/rs8070592 [22]Xu, C., Qu, J.J., Hao, X., et al., 2020. Monitoring soil carbon flux with in-situ measurements and satellite observations in a forested region. Geoderma. 378,114617. DOI: https://doi.org/10.1016/j.geoderma.2020.114617 [23]Zhou, X., Wang, X., Tong, L., et al., 2012. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn. Journal of Environmental Sciences (China). 24(12), 2104-2112. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23534206 [24]Valentini, R., Matteucci, A.J., Dolman, E.D., et al., 2000. Respiration as the main determinant of carbon balance in European forests. Nature. 404(6780), 861- 865. DOI: https://doi.org/10.1038/35009084 [25]Gudasz, C., Karlsson, J., Bastviken, D., 2021. When does temperature matter for ecosystem respiration? Environmental Research Communications. 3, 121001. DOI: https://doi.org/10.1088/2515-7620/ac3b9f [26]Zhu, S., Clement, R., McCalmont, J., et al., 2022. Stable gap-filling for longer eddy covariance data gaps: A globally validated machine-learning approach for carbon dioxide, water, and energy fluxes. Agricultural and Forest Meteorology. 314(1), 108777. DOI: https://doi.org/10.1016/j.agr-formet.2021.108777 [27]Duman, T., Schäfer, K.V.R., 2018. Partitioning net ecosystem carbon exchange of native and invasive plant communities by vegetation cover in an urban tidal wetland in the New Jersey Meadowlands (USA). Ecological Engineering. 114, 16-24. DOI: https://doi.org/10.1016/J.ECOLENG.2017.08.031 [28]Rödig, E., Huth, A., Bohn, F., et al., 2017. Estimating the carbon fluxes of forests with an individual-based forest model. Forest Ecosystems. 4, 4. DOI: https://doi.org/10.1186/s40663-017-0091-1 [29]Churkina, G., Schimel, D., Braswell, B.H., et al., 2005. Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology. 11(10), 1777-1787. DOI: https://doi.org/10.1111/j.1365-2486.2005.001012.x [30]Verduzco V.S., Garatuza-Payán, J., Yépez, E.A., et al., 2015. Variations of net ecosystem production due to seasonal precipitation differences in a tropical dry forest of northwest Mexico. Journal of Geophysical Research: Biogeosciences. 120(10), 2081-2094. DOI: https://doi.org/10.1002/2015JG003119 [31]Griffis, T., Roman, D., Wood, J., et al., 2020. Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agricultural and Forest Meteorology. 295, 108167. DOI: https://doi.org/10.1016/j.agrformet.2020.108167 [32]Besnard, S., Carvalhais, N., Arain, M.A., et al., 2019. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS ONE. 14(2), e0211510. DOI: https://doi.org/10.1371/journal.pone.0211510 [33]Mendes, K.R., Campos, S., da Silva, L.L., et al., 2020. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Scientific Reports. 10, 9454. DOI: https://doi.org/10.1038/s41598-020-66415-w [34]Wood, D.A., 2022. Machine learning and regression analysis reveal different patterns of influence on net ecosystem exchange at two conifer woodland sites. Research in Ecology. 4(2), 24-50. DOI: https://doi.org/10.30564/re.v4i2.4552 [35]Wood, D.A., 2022. Net ecosystem exchange comparative analysis of the relative influence of recorded variables in well monitored ecosystems. Ecological Complexity. 50, 100998. DOI: https://doi.org/10.1016/j.ecocom.2022.100998 [36]Cai, J., Xu, K., Zhu, Y., et al., 2020. Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest. Applied Energy. 262, 114566. DOI: https://doi.org/10.1016/j.apenergy.2020.114566 [37]Abbasian, H., Solgia, E., Hosseini, S.M., et al., 2022.Modeling terrestrial net ecosystem exchange using machine learning techniques based on flux tower measurements. Ecological Modelling. 446, 109901. DOI: https://doi.org/10.1016/j.ecolmodel.2022.109901 [38]Wood, D.A., 2021, Net ecosystem carbon exchange prediction and data mining with an optimized data-matching algorithm achieves useful knowledge-based learning relevant to environmental carbon storage. Ecological Indicators. 124, 107426. DOI: https://doi.org/10.1016/j.ecolind.2021.107426 [39]Kirschbaum, M.U., Mueller, R., 2001. Net Ecosystem Exchange: Workshop Proceedings, Cooperative Research Centre for Greenhouse Accounting [Internet] [cited 2001 April 18-20]. Available from: https://www.kirschbaum.id.au/NEE_Workshop_Proceedings.pdf. [40]Reichstein, M., Falge, E.M., Baldocchi, D.D., et al., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology. 11, 1424-1139. DOI: https://doi.org/10.1111/j.1365-2486.2005.001002.x [41]FLUXNET, 2023. International Network of Eddy Covariance Measurement Sites [Internet] [cited 2023 Jan 15]. Available from: https://fluxnet.org/. [42]Luyssaert, S., Reichstein, M., Schulze, E.D., et al., 2009. Toward a consistency cross-check of eddy covariance flux–Based and biometric estimates of ecosystem carbon balance. Global Biogeochemical Cycles. 23, 13. DOI: https://doi.org/10.1029/2008GB003377 [43]Fei, X., Jin, Y., Zhang, Y., et al., 2017. Eddy covariance and biometric measurements show that a savanna ecosystem in Southwest China is a carbon sink. Scientific Reports. 7, 41025. DOI: https://doi.org/10.1038/srep41025 [44]AmeriFlux, 2022. AmeriFlux Management Project [Internet] [cited 2013 Jan 15]. Available from: https://ameriflux.lbl.gov/about/ameriflux-management-project/. [45]Baldocchi, D., Falge, E., Gu, L., et al., 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–Scale carbon dioxide, water vapor, and energy flux densities. Bulletiin of the American Meterorological Society. 82, 2415-2434. [46]Pastorello, G., Trotta, C., Canfora, E., et al., 2020. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data. 7, 225. DOI: https://doi.org/10.1038/s41597-020-0534-3 [47]Ameriflux, 2022. Flux/met data processing pipeline overview [Internet] [cited 2023 Jan 15]. Available from: https://ameriflux.lbl.gov/data/data-processing-pipelines/. [48]Ameriflux, 2022. Data Variable Descriptions for the FLUXNET Product [Internet] [cited 2023 Jan 15]. Available from: https://ameriflux.lbl.gov/data/aboutdata/data-variables/. [49]Teklemariam, T., Staebler, R., Barr, A.G., 2009. Eight years of carbon dioxide exchange above a mixed forest at Borden, Ontario. Agricultural and Forest Meteorology. 149, 2040-2053. DOI: https://doi.org/10.1016/j.agrformet.2009.07.011 [50]Staebler, R., 2022. AmeriFlux FLUXNET-1F CACbo Ontario-mixed deciduous, borden forest site, Ver. 3-5. AmeriFlux AMP, (Dataset). DOI: https://doi.org/10.17190/AMF/1854365 [51]Yepez, E.A., Garatuza, J., 2021. AmeriFlux FLUXNET-1F MX-Tes Tesopaco, secondary tropical dry forest, Ver. 3-5. AmeriFlux AMP, (Dataset). DOI: https://doi.org/10.17190/AMF/1832156 [52]Welch, N.T., Belmont, J.M., Randolph, J.C., 2007. Summer ground layer biomass and nutrient contribution to above-ground litter in an Indiana temperate deciduous forest. The American Midland Naturalist. 157(1), 11-26. [53]Novick, K., Phillips, R., 2022. AmeriFlux FLUXNET-1F US-MMS Morgan Monroe State Forest, Ver. 3-5. AmeriFlux AMP (Dataset). DOI: https://doi.org/10.17190/AMF/1854369 [54]Gu, L., Pallardy, S., Hosman, K.P., et al., 2016. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US. Agricultural and Forest Meteorology. 217, 120-136. DOI: https://doi.org/10.1016/J.AGRFORMET.2015.11.014 [55]Gu, L., Pallardy, S.G., Hosman, K.P., et al., 2015. Drought-influenced mortality of tree species with different predawn leaf water dynamics in a decade-long study of a central US Forest. Biogeosciences. 12(10), 2831-2845. DOI: https://doi.org/10.5194/bg-12-2831-2015 [56]Wood, J., Gu, L., 2021. AmeriFlux FLUXNET-1F US-MOz Missouri Ozark Site, Ver. 3-5. AmeriFlux AMP, (Dataset). DOI: https://doi.org/10.17190/AMF/1854370 [57]Harrell, F.E., 2015. Regression Modeling Strategies. Second Edition. Springer: Switzerland. DOI: https://doi.org/10.1007/978-3-319-19425-7 [58]Stigler, S.M., 1981. Gauss and the invention of least squares. The Annals of Statistics. 9(3), 465-474. DOI: https://doi.org/10.1214/aos/1176345451 [59]Bottou, L., 1998. Online algorithms and stochastic approximations. Online Learning and Neural Networks. Cambridge University Press: UK. [60]SciKit Learn, 2023. Supervised and Unsupervised Machine Learning Models in Python [Internet] [cited 2023 Jan 15]. Available from: https://scikit-learn.org/stable/. [61]Freund, Y., Schapire, R.E., 1997. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences. 55, 119-139. DOI: https://doi.org/10.1006/jcss.1997.1504 [62]Chan, J.C.W., Paelinckx, D., 2008. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sensing of Environment. 112(6), 2999-3011. DOI: https://doi.org/10.1016/j.rse.2008.02.011 [63]Quinlan, J.R., 1986. Induction of decision trees. Machine Learning. 1, 81-106. DOI: https://doi.org/10.1007/BF00116251 [64]Debeljak, M., Džeroski, S., 2011. Decision trees in ecological modelling. Modelling Complex Ecological Dynamics. Springer: Berlin, Heidelberg. pp. 197- 209. [65]Fix, E., Hodges Jr., J.L., 1951. Discriminatory analysis, nonparametric discrimination: consistency properties. International Statistical Review. 57(3), 238- 240. [66]Fu, Y., He, H.S., Hawbaker, T.J., et al., 2019. Evaluating k-Nearest Neighbor (kNN) imputation models for species-level aboveground forest biomass mapping in northeast China. Remote Sensing. 11, 2005. DOI: https://doi.org/10.3390/rs11172005 [67]Rosenblatt, F., 1958. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review. 65(6), 386-408. DOI: https://doi.org/10.1037/h0042519 [68]Eshel, G., Dayalu, A., Wofsy, S.C.C., et al., 2019. Listening to the forest: An artificial neural network-based model of carbon uptake at Harvard Forest. Journal of Geophysical Research: Biogeosciences. 124, 461-478. DOI: https://doi.org/10.1029/2018JG004791 [69]Safa, B., Arkebauer, T.J., Zhu, Q., et al., 2019. Net Ecosystem Exchange (NEE) simulation in maize using artificial neural networks. IFAC Journal of Systems and Control. 7, 100036. DOI: https://doi.org/10.1016/j.ifacsc.2019.100036 [70]Ho, T.K., 1998. The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20(8), 832-844. DOI: https://doi.org/10.1109/34.709601 [71]Zhou, Q., Fellows, A., Flerchinger, G.N., et al., 2019. Examining interactions between and among predictors of net ecosystem exchange: A machine learning approach in a semi-arid landscape. Scientific Reports. 9, 2222. DOI: https://doi.org/10.1038/s41598-019-38639-y [72]Huang, N., Wang, L., Zhang, Y., et al., 2021. Estimating the net ecosystem exchange at global FLUXNET sites using a random forest model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 14, 9826-9836. DOI: https://doi.org/10.1109/JSTARS.2021.3114190 [73]Cortes, C., Vapnik, V., 1995. Support-Vector networks. Machine Learning. 20(3), 273-297. DOI: https://doi.org/10.1007/BF00994018 [74]IIlie, I., Dittrich, P., Carvalhais, N., et al., 2017. Reverse engineering model structures for soil and ecosystem respiration: The potential of gene expression programming. Geoscientific Model Development. 10(9), 3519-3545. DOI: https://doi.org/10.5194/gmd-10-3519-2017 [75]Li, Z., Chen, C., Nevins, A., et al., 2021. Assessing and modeling ecosystem carbon exchange and water vapor flux of a pasture ecosystem in the temperate climate-transition zone. Agronomy. 11, 2071. DOI: https://doi.org/10.3390/agronomy11102071 [76]Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. Krishnapuram, Balaji; Shah, et al. (editors). Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016 August 13-17; San Francisco, CA, USA. New York: Association for Computing Machinery. p. 785-794. DOI: https://doi.org/10.1145/2939672.2939785 [77]Yan, S., Wu, L., Zhang, F., et al., 2021. A novel hybrid WOA-XGB model for estimating daily reference evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China. Agricultural Water Management. 244, 106594. DOI: https://doi.org/10.1016/j.agwat.2020.106594 [78]Liu, J., Zuo, Y., Wang, N., et al., 2021. Comparative analysis of two machine learning algorithms in predicting site-level net ecosystem exchange in major biomes. Remote Sensing. 13, 2242. DOI: https://doi.org/10.3390/rs13122242 [79]SciKit Learn, 2023. GridSearchCV: Exhaustive Search Over Specified Parameter Values for an Estimator in Python [Internet] [cited 2023 Jan 15]. Available from: https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html. [80]SciKit Learn, 2023. Bayesian Optimization of Hyperparameters in Python [Internet] [cited 2023 Jan 15]. Available from: https://scikit-optimize.github.io/stable/modules/generated/skopt.BayesSearchCV.html. [81]SciKit Learn, 2023. Cross-validation: Evaluating Estimator Performance [Internet] [cited 2023 Jan 15]. Available from: https://scikit-learn.org/stable/modules/cross_validation.html. [82]Pearson, K., 1894. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society of London. 185, 71-110. [83]Spearman, C., 1904. The proof and measurement of association between two things. American Journal of Psychology. 15(1), 72-101. DOI: https://doi.org/10.2307/1412159 [84]Lawrence, I., Lin, K., 1989. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 255-268. DOI: https://doi.org/10.2307/2532051 [85]Boddy, R., Smith, G., 2009. Statistical Methods in Practice: For scientists and technologists. John Wiley & Sons Ltd: Chichester, UK. pp. 95-96. [86]Wayne, D.W., 1990. Spearman rank correlation coefficient. Applied Nonparametric Statistics (2nd ed). PWS-Kent: Boston. pp. 58-365. [87]Artusi, R., Verderio, P., Marubini, E., 2002. Bravais-Pearson and Spearman correlation coefficients: meaning, test of hypothesis and confidence interval. The International Journal of Biological Markers. 17(2),148-151. DOI: https://journals.sagepub.com/doi/pdf/10.1177/172460080201700213 [88]Myers, L., Sirois, M.J., 2004. Spearman correlation coefficients, differences between. Encyclopedia of Statistical Sciences. John Wiley & Sons: UK. DOI: https://doi.org/10.1002/0471667196.ess5050 [89] Marino, B.D.V., Bautista, N., 2022. Commercial forest carbon protocol over-credit bias delimited by zero-threshold carbon accounting. Trees, Forests and People. 7, 100171. DOI: https://doi.org/10.1016/j.tfp.2021.100171