Research Status, Problems and Direction of Soil Organic Carbon in Zoige Peat Wetland
Source: By:Chanhua Ma, Zhengqiang Xu
DOI: https://doi.org/10.30564/re.v5i3.5799
Abstract:Peatlands, as a special type of wetland, occupy only 3% of the Earth’s surface, but bear about one-third of the world’s soil carbon storage and play an important role in the global carbon cycle. The Zoige Wetland is located on the eastern edge of the Qinghai-Tibet Plateau, and its peat reserves are up to 1.9 billion tons, accounting for more than 40% of the country’s peat resources, which is an important support for China to achieve the “double carbon” goal. This paper reviews the research status and storage estimation of soil organic carbon in Zoige Wetland. The statistical results show that there is a large difference in the estimation of carbon storage in the peatland of Zoige (0.43-1.42 Pg). The reasons are mainly related to marked differences in values reported for soil densities, organic carbon levels, and accumulation rates. There are still great uncertainties in the estimation of wetland carbon stocks, and future studies should focus on reducing soil carbon sink uncertainties, climate change, the impact of permafrost melting on carbon sink functions, the impact of degraded ecosystem restoration and sink enhancement pathways, and other greenhouse gas functions. In order to accurately reveal the current situation and future trend of carbon sink in peat wetlands, a model-multi-source observation data fusion system was constructed to complement the observation shortcomings in key areas, and provide reference and support for the construction of carbon neutral ecological civilization.
References:[1] Amundson, R., 2001. The carbon budget in soils. Annual Review of Earth and Planetary Sciences. 29(1), 535-562. [2] Carvalhais, N., Forkel, M., Khomik, M., et al., 2014. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature. 514(7521), 213-217. [3] Friedlingstein, P., O’sullivan, M., Jones, M.W., et al., 2020. Global carbon budget 2020. Earth System Science Data Discussions. 12(4), 3269-3340. [4] Hicks Pries, C.E., Castanha, C., Porras, R.C., et al., 2017. The whole-soil carbon flux in response to warming. Science. 355(6332), 1420-1423. [5] Lal, R., 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123(1-2), 1-22. [6] Davidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 440(7081), 165-173. [7] Jiang, W., Lv, J., Wang, C., et al., 2017. Marsh wetland degradation risk assessment and change analysis: A case study in the Zoige Plateau, China. Ecological Indicators. 82, 316-326. [8] Tian, Y.B., Xiong, M.B., Xiong, X.Sh., et al., 2003. Ruo er gai gao yuan shi di tu rang-zhi wu xi tong you ji tan de fen bu yu liu dong (Chinese) [Distribution and flow of organic carbon in soil-plant system of Zoige Plateau wetland]. Chinese Journal of Plant Ecology. (4), 60-65. [9] Gao, J.Q., Lei, G.Ch., Li, L., et al., 2010. Ruo er gai gao yuan san zhong shi di tu rang you ji tan fen bu te zheng (Chinese) [Distribution characteristics of soil organic carbon in three kinds of wetlands in the Zoige Plateau]. Wetland Science. 8(4), 327-330. [10] Gao, J.Q., Ouyang, H., Bai, J.H., 2006. Ruo er gai gao han shi di tu rang huo xing you ji tan chui zhi fen bu te zheng (Chinese) [Vertical distribution of soil active organic carbon in Zoige Alpine wetland]. Journal of Soil and Water Conservation. 20(86), 76-79. [11] Gao, J.Q., Ouyang, H., Zhang, F., et al., 2007. Ruo er gai gao han shi di biao ceng tu rang you ji tan kong jian fen bu te zheng (Chinese) [Spatial distribution of surface soil organic carbon in Zoige Alpine wetland]. Ecological Environment. 16(6), 1723-1727. [12] Li, L., Gao, J.Q., Lei, G.Ch., et al., 2011. Ruo er gai bu tong di xia shut wei ni tan shi di tu rang you ji tan he quan dan fen bu gui lü (Chinese) [Distribution of soil organic carbon and total nitrogen in peat wetlands with different groundwater levels in Zoige, China]. Chinese Journal of Ecology. 30(11), 2449-2455. [13] Ma Q.F., 2013. Ruo er gai gao han zhao ze sheng tai xi tong tan chu liang yan jiu (Chinese) [Research on carbon storage of alpine swamp ecosystem in Zoige] [PhD thesis]. Chinese Academy of Forestry. [14] Chen, H., Yang, G., Peng, C., et al., 2014. The carbon stock of alpine peatlands on the Qinghai–Tibetan Plateau during the Holocene and their future fate. Quaternary Science Reviews. 95, 151-158. [15] Zhou, W.Ch., Solangduerji, Cui, L.J., et al., 2016. Pai shut dui ruo er gai gao yuan ni tan di tu rang you ji tan chu liang de ying xiang (Chinese) [Effects of drainage on soil organic carbon storage in peatland of Zoige Plateau]. Acta Ecologica Sinica. 36(8), 2123-2132. [16] Liu, L.J., Liu, X.W., Ju, P.J., et al., 2018. 15000 Nian yi lai ruo er gai gao yuan ni tan di fa yu ji qi tan dong tai (Chinese) [Development and carbon dynamics of peatland in Zoige Plateau during 15000 years]. Acta Ecologica Sinica. 38(18), 6493-6501. [17] Dong, L.J., 2017. Ruo er gai shi di tui hua guo cheng zhong tu rang tan dan lin han liang ji sheng tai hua xue ji liang bi bian hua te zheng yan jiu (Chinese) [Changes in soil carbon, nitrogen, phosphorus content and ecological stoichiometric ratio during the degradation of Zoige wetland] [Master’s thesis]. Lanzhou University. [18] Wang, W.B., Bai, B., Zhang, P.Q., et al., 2021. Bei jing ruo er gai shi di tu rang you ji tan han liang he mi du de fen bu te zheng (Chinese) [Distribution characteristics of soil organic carbon content and density in Zoige wetland]. Chinese Journal of Ecology. 40(11), 3523-3530. [19] Zheng, Y., Niu, Z., Gong, P., et al., 2013. Preliminary estimation of the organic carbon pool in China’s wetlands. Chinese Science Bulletin. 58, 662-670. [20] Niu, Zh.G., Gong, P., Cheng, X., et al., 2009. Zhong guo shi di chu bu yao gan zhi tu ji xiang guan di li te zheng fen xi (Chinese) [Preliminary remote sensing mapping of wetlands in China and analysis of related geographical features]. Science in China: Series D. (2), 16. [21] Zhang, X.H., Li, D.Y., Pan, G.X., et al., 2008. Zhong guo shi di tu rang tan ku bao hu yu qi hou bian hua wen ti (Chinese) [Conservation of wetland soil carbon pool and climate change in China]. Advances in Climate Change Research. 4, 202-208. [22] Wang, X., Cammeraat, E.L., Cerli, C., et al., 2014. Soil aggregation and the stabilization of organic carbon as affected by erosion and deposition. Soil Biology and Biochemistry. 72, 55-65. [23] Wang, M., Liu, Z.G., Ma, X.H., et al., 2012. Zhong guo ni tan di you ji tan chu liang fen qu (Chinese) [Organic carbon storage zoning in peatlands in China]. Wetland Science. 10(2), 157-163. [24] Liu, W., Chen, S., Qin, X., et al., 2012. Storage, patterns,and control of soil organic carbon and nitrogen in the northeastern margin of the Qinghai-Tibetan Plateau. Environmental Research Letters. 7(3), 035-041. [25] Ma, K., 2016. Ruo er gai gao han shi di tu rang you ji tan chu liang shi kong bian hua yan jiu (Chinese) [Study on spatiotemporal changes of soil organic carbon storage in the alpine wetland of Ruoergai] [PhD thesis]. Beijing: Beijing Forestry University. [26] Liu, X.W., Wu, J.H., Zhu, D., et al., 2016. San jiang ping yuan ni tan de guo qu 10 ka ni tan chu liang yu tan chu liang de mo xing gu suan (Chinese) [Model estimation of past 10 ka of peat reserves and carbon reserves in peatland, Sanjiang Plain]. Chinese Journal of Applied & Environmental Biology. 22(4), 586-591. [27] Guo, J., Li, G.P., 2007. Ruo er gai qi hou bian hua ji qi dui shi di tui hua de ying xiang (Chinese) [Climate change and its impact on wetland degradation in Zoige]. Plateau Meteorology. 2, 422-428. [28] Chen, S.Ch., 2019. Qing zang gao yuan tu rang shi du de shi kong fen bu te zheng (Chinese) [Spatial and temporal distribution of soil moisture in the Tibetan Plateau]. Scientia Naturalis Sinica. 7(4). [29] Liu, Zh.W., Li, Sh.G., Wei, W., et al., 2019. Jin san shi nian qing zang gao yuan shi di bian hua ji qi qu dong li yan jiu jin zhan (Chinese) [Research progress of wetland change and its driving forces in the Tibetan Plateau in the past 30 years]. Chinese Journal of Ecology. [30] Guo, X.L, Du, W., Wang, X., et al., 2013. Degradation and styucture change of humic acids corresponding to water decline in Zoige peatland, Qinnghai-Tibet Plateau. Science of the Total Environment. 445, 231-236. [31] Xiang, S., Guo, R.Q., Wu, N., et al., 2009. Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau. Ecological Engineering. 35, 553-562. [32] Cui, Y., Zhang, X.X., Zhang, X., et al., 2020. ruo er gai xian shi di wen tai zhuan huan de shut wen di mao sheng tai yu zhi (Chinese) [Hydrological and geomorphologic ecological threshold of steady-state transformation of wetland in Zoige County, Sichuan Province]. Acta Ecologica Sinica. 40(23), 8794-8804. DOI: http://dx.doi.org/10.5846/stxb202001030023 [33] Luan, J., Cui, L., Xiang, C., et al., 2014. Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai—Tibet Plateau. Ecological Engineering. 64, 262-268. [34] Li, K., Yang, Y.X., Yang, Y., et al., 2012. Ji yu zhi bei shu liang fen lei de pai shui shu gan ying xiang xia ruo er gai gao yuan zhao ze tui hua te zheng (Chinese) [Characteristics of swamp degradation in Zoige Plateau under the influence of drainage and dewatering based on vegetation quantity classification]. Chinese Journal of Applied Ecology. 23(7), 1781-1789. [35] Huo, L., Chen, Z., Zou, Y., et al., 2013. Effect of Zoige alpine wetland degradation on the density and fractions of soil organic carbon. Ecological Engineering. 51, 287-295. [36] Bai, J.H., Gao, J.Q., Ouyang, H., 2006. Vertical distribution characteristics of soil labile organic carbon in Ruoergai Wetland. Journal of Soil and Water Conservation. 20(1), 76-86. [37] McSherry, M.E., Ritchie, M.E., 2013. Effects of grazing on grassland soil carbon: a global review. Global Change Biology. 19(5), 1347-1357. [38] Maillard, É., Angers, D.A., 2014. Animal manure application and soil organic carbon stocks: A meta‐analysis. Global Change Biology. 20(2), 666-679. [39] Wu, G.L., Liu, Z.H., Zhang, L., et al., 2010. Long-term fencing improved soil properties and soil organic carbon storage in an alpine swamp meadow of western China. Plant and Soil. 332, 331-337. [40] Wang, Y.F., Lv, W.W., Xue, K., 2022. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau. Nature Reviews Earth & environment. 3, 668-683. [41] Lai, J.D., Tian, K., Zhao, Y.H., et al., 2013. Jin mu dui gao yuan shi di na pa hai tui hua cao dian tu rang li hua xing zhi de ying xiang (Chinese) [Effects of grazing ban on soil physicochemical properties of degraded meadow in Napa Sea Plateau wetland]. Western Forestry Science. 42(2), 43-48. [42] Wang, Y.F., Chen, Z.Zh., Tieszen, L.T., 1998. Ren lei huo dong dui xi lin guo le di qu zhu yao cao yuan tu rang you ji tan fen bu de ying xiang (Chinese) [Effects of human activities on soil organic carbon distribution in major grasslands in Xilin Gol Region, China]. Chinese Journal of Plant Ecology. 22(6), 545-551. [43] He, G.Y., Sun, H.Zh., Shi, X.M., et al., 2015. Qing zang gao yuan gao han shi di bu tong ji jie tu rang li hua xing zhi dui fang mu mo shi de xiang ying (Chinese) [Response of soil physicochemical properties to grazing patterns in alpine wetland of Qinghai-Tibet Plateau in different seasons]. Journal of Agrochemistry. 24(4), 12-20. [44] Liu, L.J., Liu, X.W., Ju, P.J., et al., 2018. 15000 nian yi lai ruo er gai gao yuan ni tan di fa yu ji qi tan dong tai (Chinese) [Peatland development and carbon dynamics histories of zoige peatlands for 15000 years]. Acta Ecologica Sinica. 38(18), 1-9. [45] Yu, Z., Li, Q.,Wang, P., et al., 2022. Changes of organic carbon density in desert steppe ecosystem driven by degradation and restoration. Journal of Desert Research. 42(2), 215-222. DOI: 10.7522/j.issn.1000-694X.2022.00015 [46] Wang, T., Piao, Sh.L., 2023. Qing cang gao yuan lu di sheng tai xi tong tan hui gu suan: jin zhan, tiao zhan yu zhan wang (Chinese) [Estimate of terrestrial carbon balance over the Tibetan Plateau: Progresses, challenges and perspectives]. Quaternary Sciences. 43(2), 313-323.