What If I Told You Camouflage is a Myth? Animal Coloration is Mainly A-biotic and not Biotic (Camouflage)
Source: By:Zvi Sever
DOI: https://doi.org/10.30564/re.v6i1.6100
Abstract:In the present article, the author posits that the perception that animals apparently display a strategy of avoiding detection by means of camouflage—i.e., by disguising themselves in the natural colours of their environment—is not the actual case in nature but, rather, merely anecdotal. Animal coloration is mainly a-biotic (eco-physiological) and not biotic (camouflage). The contention regarding the absence of the phenomenon of camouflage among animals as a common evolutionary response is based on three arguments: 1) that reflecting the natural colours of the environment is linked to ecophysiology; 2) that predator and prey constitute “an evolutionary pair” and, accordingly, they know how to identify one another (in order to survive they employ different strategies, of which camouflage is not one of them); and 3) that the approach of relating animal camouflage to reflecting the colours of the environment is an anthropocentric one. Rather than the accepted biotic-ethological approach (colour camouflage), the present article suggests the recognition of a-biotic and eco-physiological conditions as a distinct research field, whose title “Reflection of environmental colours by animals”, along with this article, calls for eco-physiologists to demonstrate that this approach indeed offers a special contribution to the understanding of colouration in animals.
References:[1] The History of Animals [Internet]. [cited 2024 Mar 19]. Available from: http://classics.mit. edu/Aristotle/history_anim.mb.txt [2] Parker, S., 2021. Camouflage: 100 masters of disguise from the animal kingdom. Ivy Press: Brighton. [3] Zoonomia, or, The Laws of Organic Life [Internet]. [cited 2024 Mar 19]. Available from: http://darwin-online.org.uk/converted/pdf/1794_Zoonomia_A967.1.pdf [4] Darwin, C., 1872. The origin of species with introduction, notes and illustrations. P.F. Collier & Son Press: New York. [5] Thayer, G.H., 1909. Concealing-Coloration in the Animal Kingdom. Macmillan Publishers: New York. [6] Cott, H.B., 1957. Adaptive coloration in animals. Methuen & Co Ltd: London. [7] Owen, D., 1982. Camouflage and mimicry. University of Chicago Press: Chicago. [8] Tildes, P.L., 2020. Animals in camouflage. Charlesbridge Pub.: Watertown. [9] Osorio, D., Cuthill, I., 2015. Camouflage and perceptual organization in the animal kingdom. The Oxford handbook of perceptual organization. Oxford University Press: Oxford. pp. 843–862. DOI:https://doi.org/10.1093/oxfordhb/9780199686858.013.044 [10] Endler, J.A., Mappes, J., 2017. The current and future state of animal coloration research. Philosophical Transactions of the Royal Society B: Biological Sciences. 372(1724), 20160352. DOI:http://dx.doi.org/10.1098/rstb.2016.0352 [11] Hughes, A., Liggins, E., Stevens, M., 2019. Imperfect camouflage: how to hide in a variable world? Proceedings of the Royal Society B. 286(1902), 20190646. DOI:http://dx.doi.org/10.1098/rspb.2019.0646 [12] Galloway, J.A., Green, S.D., Stevens, M., et al., 2020. Finding a signal hidden among noise: How can predators overcome camouflage strategies? Philosophical Transactions of the Royal Society B. 375(1802), 20190478. DOI:http://doi.org/10.1098/rstb.2019.0478 [13] Merilaita, S., 2003. Visual background complexity facilitates the evolution of camouflage. Evolution. 57(6), 1248–1254. DOI:https://doi.org/10.1111/j.0014-3820.2003.tb00333.x [14] Kácha, P., Petr, V., 1995. Camouflage and mimicry in fossils I: general part. Acta Musei nationalis Pragae, Series B–Historia Naturalis. 51(1–4), 53–82. [15] Endler, J.A., 1978. A predator’s view of animal color patterns. Evolutionary Biology. Springer: Boston. pp. 319–364. DOI:https://doi.org/10.1007/978-1-4615-6956-5_5 [16] Merilaita, S., Lyytinen, A., Mappes, J., 2001. Selection for cryptic coloration in a visually heterogeneous habitat. Proceedings of the Royal Society of London. Series B: Biological Sciences. 268(1479), 1925–1929. DOI:https://doi.org/10.1098/rspb.2001.1747 [17] Lev-Yadun, S., Dafni, A., Flaishman, M.A., et al., 2004. Plant coloration undermines herbivorous insect camouflage. BioEssays. 26(10), 1126–1130. DOI:https://doi.org/10.1002/bies.20112 [18] Dawkins, R., Krebs, J.R., 1979. Arms races between and within species. Proceedings of the Royal Society of London. Series B. Biological Sciences. 205(1161), 489–511. DOI:http://doi.org/10.1098/rspb.1979.0081 [19] Humphreys, R.K., Ruxton, G.D., 2020. The dicey dinner dilemma: Asymmetry in predator–prey risk-taking, a broadly applicable alter-native to the life-dinner principle. Journal of Evolutionary Biology. 33(3), 377–383. DOI:https://doi.org/10.1111/jeb.13585 [20] Schmidt-Nielsen, K., 1997. Animal physiology: Adaptation and environment. Cambridge University Press: Cambridge. [21] Mendelssohn, H. 1974. Adaptation of animals to live in deserts. Symposium Israel – France: Ecological research on developing of arid zones (Mediterranean deserts) with winter precipitation, 39: 181- 191. [22] Hamilton, W.J., 1973. Life’s color code. McGrew-Hill: New York. [23] Pearson, O.P., 1977. The effect of substrate and of skin color on thermoregulation of a lizard. Comparative Biochemistry and Physiology Part A: Physiology. 58(4), 353–358. DOI:https://doi.org/10.1016/0300-9629(77)90154-2 [24] Campbell, M.D., Schoeman, D.S., Venables, W., et al., 2021. Testing Bergmann’s rule in marine copepods. Ecography. 44(9), 1283–1295. DOI:https://doi.org/10.1111/ecog.05545 [25] Nudds, R.L., Oswald, S.A., 2007. An interspecific test of Allen’s rule: Evolutionary implications for endothermic species. Evolution. 61(12), 2839–2848. DOI:https://doi.org/10.1111/j.1558-5646.2007.00242.x [26] Ryding, S., Klaassen, M., Tattersall, G.J., et al., 2021. Shape-shifting: Changing animal morphologies as a response to climatic warming. Trends in Ecology & Evolution. 36(11), 1036–1048. DOI:https://doi.org/10.1016/j.tree.2021.07.006 [27] Delhey, K., 2019. A review of Gloger’s rule, an ecogeographical rule of colour: Definitions, interpretations and evidence. Biological Reviews. 94(4), 1294–1316. DOI:https://doi.org/10.1111/brv.12503 [28] Delhey, K., Dale, J., Valcu, M., et al., 2019. Reconciling ecogeographical rules: Rainfall and temperature predict global colour variation in the largest bird radiation. Ecology Letters. 22(4), 726–736. DOI:https://doi.org/10.1111/ele.13233 [29] Hanlon, R.T., Chiao, C.C., Mäthger, L.M., et al., 2011. Rapid adaptive camouflage in cephalopods. Animal camouflage: Mechanisms and functions. Cambridge University Press: Cambridge. DOI:https://doi.org/10.1017/CBO9780511852053.009 [30] Guidetti, G., Levy, G., Matzeu, G., et al., 2021. Unmixing octopus camouflage by multispectral mapping of Octopus bimaculoides’ chromatic elements. Nanophotonics. 10(9), 2441–2450. DOI:https://doi.org/10.1515/nanoph- 2021-0102 [31] Hadjisolomou, S.P., El-Haddad, R.W., Kloskowski, K., 2021. Quantifying the speed of chromatophore activity at the single-organ level in response to a visual startle stimulus in living, intact squid. Frontiers in Physiology. 12, 675252. DOI:https://doi.org/10.3389/fphys.2021.675252 [32] Allen, J.J., Akkaynak, D., Schnell, A.K., et al., 2017. Dramatic fighting by male cuttlefish for a female mate. The American Naturalist. 190(1), 144–151. DOI:https://doi.org/10.1086/692009 [33] Second Thoughts about Peppered Moths. This Classical Story of Evolution by Natural Selection Needs Revising [Internet]. [cited 2024 Mar 19]. Available from: https://www.discovery.org/a/590/ [34] Majerus, M.E.N., 1998. Melanism: Evolution in action. Oxford University Press: Oxford. [35] Mallet, J., 2004. The peppered moth: A black and white story after all. Genetics Society News. 50, 34–38.https://www.ucl.ac.uk/taxome/jim/pap/malletgensoc03.pdf [36] Walton, O.C., Stevens, M., 2018. Avian vision models and field experiments determine the survival value of peppered moth camouflage. Communications Biology. 1, 118. DOI:https://doi.org/10.1038/s42003-018-0126-3 [37] Stavenga, D.G., Wallace, J.R., 2020. Bogong moths are well camouflaged by effectively decolourized wing scales. Frontiers in Physiology. 11, 95. DOI:https://doi.org/10.3389/fphys.2020.00095 [38] Hsiung, B.K., Shawkey, M.D., Blackledge, T.A., 2019. Color production mechanisms in spiders. The Journal of Arachnology. 47(2), 165–180. DOI:https://doi.org/10.1636/JoA-S-18-022 [39] Chittka, L., 2001. Camouflage of predatory crab spiders on flowers and the colour perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). Entomologia Generalis. 25(3), 181–187. DOI:https://doi.org/10.1127/entom.gen/25/2001/181 [40] Eberhard, W., 2003. Substitution of silk stabilimenta for egg sacs by Allocyclosa bifurca (Araneae: Araneidae) suggests that silk stabilimenta function as camouflage devices. Behaviour. 140(7), 847–868. DOI:https://doi.org/10.1163/156853903770238346 [41] Théry, M., Casas, J., 2009. The multiple disguises of spiders: Web colour and decorations, body colour and movement. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1516), 471–480. DOI:https://doi.org/10.1098/rstb.2008.0212 [42] Figon, F., Casas, J., 2018. Morphological and physiological colour changes in the animal kingdom. eLS. John Wiley & Sons, Ltd: Chichester. DOI:https://doi.org/10.1002/9780470015902.a0028065 [43] Heiling, A.M., Chittka, L., Cheng, K., et al., 2005. Colouration in crab spiders: substrate choice and prey attraction. Journal of Experimental Biology. 208(10), 1785–1792. DOI:https://doi.org/10.1242/jeb.01585 [44] Ryer, C.H., Lemke, J.L., Boersma, K., et al., 2008. Adaptive coloration, behavior and predation vulnerability in three juvenile north Pacific flatfishes. Journal of Experimental Marine Biology and Ecology. 359(1), 62–66. DOI:https://doi.org/10.1016/j.jembe.2008. 02.017 [45] Spinner, M., Kortmann, M., Traini, C., et al., 2016. Key role of scale morphology in flatfishes (Pleuronectiformes) in the ability to keep sand. Scientific Reports. 6, 26308. DOI:https://doi.org/10.1038/srep26308 [46] Vinagre, C., França, S., Cabral, H.N., 2006. Diel and semi-lunar patterns in the use of an intertidal mudflat by juveniles of Senegal sole, Solea senegalensis. Estuarine, Coastal and Shelf Science. 69(1–2), 246–254. DOI:https://doi.org/10.1016/j.ecss.2006.04.017 [47] Maia, A., Vinagre, C., Cabral, H.N., 2009. Impact of a predator in the foraging behaviour of Solea senegalensis. Journal of the Marine Biological Association of the United Kingdom. 89(3), 645–649. DOI:https://doi.org/10.1017/S002531540800266X [48] Stuart-Fox, D., Moussalli, A., 2008. Selection for social signalling drives the evolution of chameleon colour change. PLoS Biology. 6(1), e25. DOI:https://doi.org/10.1371/journal.pbio.0060025 [49] Keren-Rotem, T., Levy, N., Wolf, L., et al., 2016. Male preference for sexual signalling over crypsis is associated with alternative mating tactics. Animal Behaviour. 117, 43–49. DOI:https://doi.org/10.1016/j.anbehav.2016.04.021 [50] Stuart-Fox, D., Moussalli, A., 2009. Camouflage, communication and thermoregulation: Lessons from colour changing organisms. Philosophical Transactions of the Royal Society B: Biological Sciences. 364(1516), 463–470. DOI:https://doi.org/10.1098/rstb.2008.0254 [51] There’s No Hiding This Camouflage. Chameleons Change Color to Stick out, not to Disappear [Internet]. Science. [cited 2024 Mar 19]. Available from: https://www.science.org/content/article/theres-no-hiding-camouflage [52] Best, R.C., 1985. Digestibility of ringed seals by the polar bear. Canadian Journal of Zoology. 63(5), 1033–1036. DOI:https://doi.org/10.1139/z85-155 [53] Smith, T.G., 1980. Polar bear predation of ringed and bearded seals in the land-fast sea ice habitat. Canadian Journal of Zoology. 58(12), 2201–2209. DOI:https://doi.org/10.1139/z80-302 [54] Chinery M.1990. Predators- Killers of the wild, strategies and techniques of predation in the natural world. Bedford Editions, London, UK, 224p. [55] Khattab, M.Q., Tributsch, H., 2015. Fibre-optical light scattering technology in polar bear hair: A re-evaluation and new results. Journal of Advanced Biotechnology and Bioengineering. 3(2), 38–51. [56] Jia, H., Guo, J., Zhu, J., 2017. Comparison of the photo-thermal energy conversion behavior of polar bear hair and wool of sheep. Journal of Bionic Engineering. 14, 616–621. DOI:https://doi.org/10.1016/S1672-6529(16)60427-4 [57] Frank, L.G., 1986. Social organization of the spotted hyaena (Crocuta crocuta). I. Demography. Animal Behaviour. 34(5), 1500–1509. DOI:https://doi.org/10.1016/S0003-3472(86)80220-2 [58] Kruuk, H., 1972. The spotted hyena: A study of predation and social behavior. The University of Chicago Press: Chicago. [59] Sever, Z., 2005. The resemblance to the environment is not necessary for camouflage. Israel Journal of Ecology & Evolution. 51, 80. [60] Burton, M., 1983. The new larousse Encyclopedia of Animal life. Hamylan Pub: Middlesex. [61] Macdonald, D., 1984. The encyclopedia of mammals. Oxford University Press: Oxford. [62] Kaczensky, P., Adiya, Y., von Wehrden, H., et al., 2014. Space and habitat use by wild Bactrian camels in the Transaltai Gobi of southern Mongolia. Biological Conservation. 169, 311–318. DOI:https://doi.org/10.1016/j.biocon.2013.11.033 [63] Camelus Dromedaries, Linnaeus, 1758 [Internet]. GBIF. [cited 2024 Mar 19]. Available from: https://www.gbif.org/species/144101237 [64] Carroll, J., Murphy, C.J., Neitz, M., et al., 2001. Photopigment basis for dichromatic color vision in the horse. Journal of Vision. 1(2). DOI:https://doi.org/10.1167/1.2.2 [65] Dmi’El, R., Prevulotzky, A., Shkolnik, A., 1980. Is a black coat in the desert a means of saving metabolic energy?. Nature. 283(5749), 761–762. DOI:https://doi.org/10.1038/283761a0 [66] Energy=Light=Radiation=Temperature [Internet]. ESA. [cited 2024 Mar 19]. Available from: https://www.esa.int/Science_Exploration/Space_Science/Energy_light_radiation_ temperature [67] Gates, D.M., 1968. Energy exchange and ecology. Bioscience. 18(2), 90–95. DOI:https://doi.org/10.2307/1294057 [68] Nussear, K.E., Simandle, E.T., Tracy, C.R., 2000. Misconceptions about colour, infrared radiation, and energy exchange between animals and their environments. Herpetological Journal. 10(3), 119–122. [69] Conservation of Energy [Internet]. [cited 2024 Mar 19]. Available from: https://www.feynmanlectures.caltech.edu/I_04.html [70] Porter, W.P., Gates, D.M., 1969. Thermodynamic equilibria of animals with environment. Ecological Monographs, 39(3), 227–244. DOI:https://doi.org/10.2307/1948545 [71] Hadley, N.F., 1979. Recent developments in ecophysiological research on desert arthropods. Journal of Arid Environments. 2(3), 211–218. DOI:https://doi.org/10.1016/S0140-1963(18)31772-5 [72] The Evolution of Color Vision [Internet]. The Talk Origins Archive. Available from: http:// www.talkorigins.org/faqs/vision.html [73] Tomasi, T.E., Anderson, B.N., Garland Jr, T., 2019. Ecophysiology of mammals. Journal of Mammalogy, 100(3), 894–909. DOI:https://doi.org/10.1093/jmammal/gyz026 [74] Feder, M.E., 2002. Plant and animal physiological ecology, comparative physiology/biochemistry, and evolutionary physiology: Opportunities for synergy: An introduction to the symposium. Integrative and Comparative Biology. 42(3), 409–414. DOI:https://doi.org/10.1093/icb/42.3.409 [75] Ackerly, D.D., Dudley, S.A., Sultan, S.E., et al., 2000. The evolution of plant ecophysiological traits: Recent advances and future directions: New research addresses natural selection, genetic constraints, and the adaptive evolution of plant ecophysiological traits. Bioscience. 50(11), 979–995. DOI: https://doi.org/10.1641/0006-3568(2000)050[0979: TEOPET]2.0.CO;2 [76] Fischer, S., Oberhummer, E., Cunha-Saraiva, F., et al., 2017. Smell or vision? The use of different sensory modalities in predator discrimination. Behavioral Ecology and Sociobiology. 71, 143. DOI:https://doi.org/10.1007/s00265-017-2371-8 [77] Clusella-Trullas, S., Nielsen, M., 2020. The evolution of insect body coloration under changing climates. Current Opinion in Insect Science. 41, 25–32. DOI:https://doi.org/10.1016/j.cois.2020.05.007 [78] Wikelski, M., 2009. Physiological ecology: Animals. The Princeton guide to ecology. Princeton University Press: Princeton. DOI:https://doi.org/10.1515/9781400833023.14 [79] Dawkins, M., 1971. Perceptual changes in chicks: Another look at the ‘search image’ concept. Animal Behaviour. 19(3), 566–574. DOI:https://doi.org/10.1016/S0003-3472(71)80113-6 [80] Crawford, B.A., Hickman, C.R., Luhring, T.M., 2012. Testing the threat-sensitive hypothesis with predator familiarity and dietary specificity. Ethology. 118(1), 41–48. DOI:https://doi.org/10.1111/j.1439-0310.2011. 01983.x [81] Crane, A.L., Ferrari, M.C., 2017. Patterns of predator neophobia: A meta-analytic review. Proceedings of the Royal Society B: Biological Sciences. 284(1861), 20170583. DOI:https://doi.org/10.1098/rspb.2017.0583 [82] Schmitz, O., 2017. Predator and prey functional traits: Understanding the adaptive machinery driving predator–prey interactions. F1000Research. 6, 1767. DOI:https://doi.org/10.12688/f1000research. 11813.1 [83] Symondson, W.O.C., Sunderland, K.D., Greenstone, M.H., 2002. Can generalist predators be effective biocontrol agents? Annual Review of Entomology. 47, 561–594. DOI:https://doi.org/10.1146/annurev.ento.47.091201.145240 [84] Hassell, M.P., May, R.M., 1986. Generalist and specialist natural enemies in insect predator-prey interactions. The Journal of Animal Ecology. 55(3), 923–940. DOI:https://doi.org/10.2307/4425 [85] Rogers, D., 1972. Random search and insect population models. The Journal of Animal Ecology. 41(2), 369–383. DOI:https://doi.org/10.2307/3474 [86] Creed, B., Reesink, M., 2015. Animals, images, anthropocentrism. NECSUS. European Journal of Media Studies. 4(1), 95–105. DOI:https://doi.org/10.25969/mediarep/15174 [87] Horowitz, A., Hecht, J., 2014. Looking at dogs: Moving from anthropocentrism to canid umwelt. Domestic dog cognition and behavior: The scientific study of Canis familiaris. Springer: Berlin. pp. 201–219. DOI:https://doi.org/https://doi.org/10.1007/ 978-3-642-53994-7_9 [88] White, T.I., 2013. Humans and dolphins: An exploration of anthropocentrism in applied environmental ethics. Journal of Animal Ethics. 3(1), 85–99. DOI:https://doi.org/10.5406/janimalethics.3.1.0085 [89] Furlong, E., Silver, Z., Furlong, J., 2018. Anthropocentrism as cognitive dissonance in animal research?. Animal Sentience. 12(11). DOI:https://doi.org/10.51291/2377-7478.1366 [90] Wynne, C.D.L., 2007. What are animals? Why anthropomorphism is still not a scientific approach to behavior. Comparative Cognition & Behavior Reviews. 2, 125–135. DOI:https://doi.org/10.3819/ccbr.2008.20008 [91] The Influence of Environment upon Coloration and Size in Tortoise Populations [Internet]. Tortoise Trust Web. [cited 2024 Mar 19]. Available from: https://www.tortoisetrust.org/ articles/golden.htm