Synthesis, Characterization and Applications of MoO3-Fe3O4 Nanocomposite Material
Source: By:Madhukar Eknath Navgire, Akash Nagare, Ganesh Kale, Sandesh Bhitre
DOI: https://doi.org/10.30564/jmmr.v2i2.1124
Abstract:In the present investigation a series of MoO3-Fe3O4 nanocomposite material such as MoO3, Fe3O4, Beta cyclodextrin (b-CD) doped MoO3-Fe3O4 and Graphite doped MoO3-Fe3O4 have been synthesized successfully by co-precipitation method. Synthesized nanomaterials were characterized in detail by XRD, FT-IR, TEM-HRTEM, UV-Vis DRS techniques. The crystalline size was in the range of 10±2 nm. The activity of the prepared material as a heterogeneous catalyst was successfully tested on the organic reaction of synthesis of substituted m-Chloro-Nitrobenzene and it was found to give excellent yield.
References:[1] L.J. Xu, J.L. Wang, dx. Environ. Sci. Technol. 2012, 46: 10145−10153. DOI: https://doi.org/10.1021/es300303f [2] W. S. Zhu, P. W. Wu, L. Yang, Y. H. Chang, Y. H. Chao, H. M. Li, Y. Q. Jiang, W. Jiang, S. H. Xun, Chem. Eng. J., 2013, 229: 250-256. [3] W. Jiang, W. S. Zhu, H. M. Li, J. Xiong, S. H. Xun, Z. Zhao, Q. Wang, RSC Adv., 2013, 3: 2355-2361. [4] Y. Nie, Y. X. Dong, L. Bai, H. F. Dong, X. P. Zhang, Fuel, 2013, 103: 997-1002. [5] Y. Z. Chen, F. W. Zhang, Y. Y. Fang, X. H. Zhu, W. L. Zhen, R. Wang, J. T. Ma, Catal. Commun., 2013, 38: 54-58. [6] F. Wang, G. J. Wang, H. J. Cui, W. T. Sun, T. B. Wang, Mater. Res. Bull., 2015, 63: 181-186. [7] Y. Zhou, L. Sun, H. Wang, W. Liang, J. Yang, L. Wang, S. Shuan, Investigation on the uptake and release ability of β-cyclodextrin functionalized Fe3O4 magnetic nanoparticles by methylene blue, Materials Chemistry and Physics, 2016, 170: 83-89. [8] C. Pizarro, M. A. Rubio, M. Escudey, M. F. Albornoz, D. Munoz, J. Denardin, J. D. Fabris, Nanomagnetite-Zeolite Composites in the Removal of Arsenate from Aqueous Systems, J. Braz. Chem. Soc., 2015, 26: 1887-1896. [9] N. Yang, S. Zhu, D.Zhang, S. Xu, Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal, Materials Letters, 2008, 62: 645-647. [10] A.L. Cazetta, O. Pezoti, K.C. Bedin, T.L. Silva, A.P. Junior, T. Asefa, V.C. Almeida, Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes, ACS Sustainable Chem. Eng., 2016, 4: 1058−1068. [11] ME Navgire, P Gogoi, B Mallesham, A Rangaswamy, BM Reddy, β-Cyclodextrin supported MoO3-CeO2 nanocomposite material as an efficient heterogeneous catalyst for degradation of phenol, RSC Advances 2016, 6(34): 28679-28687. [12] A Gogoi, M Navgire, KC Sarma, P Gogoi, Fe3O4-CeO2 metal oxide nanocomposite as a Fenton-like heterogeneous catalyst for degradation of catechol, Chemical Engineering Journal, 2017, 311: 153-162. [13] A Gogoi, M Navgire, KC Sarma, P Gogoi, Highly efficient heterogeneous Fenton activities of magnetic β-cyclodextrin (Fe) framework for Eriochrome black T degradation, Materials Chemistry and Physics, 2019, 231: 233-243. [14] A Gogoi, M Navgire, KC Sarma, P Gogoi, Synthesis and characterization of β-cyclodextrin coated Fe3O4/carbon nanocomposite for adsorption of tea catechin from aqueous solutions, Indian Journal of Chemical Technology, 2017, 24(5): 498-507. [15] A Gogoi, M Navgire, KC Sarma, P Gogoi, Novel highly stable β-cyclodextrin fullerene mixed valent Fe-metal framework for quick Fenton degradation of alizarin, RSC Advances, 2017, 7, 64: 40371-40382. [16] J. Haber, The Role of Molybdenum in Catalysis, Climax Molybdenum, Ann Arbor, MI, 1981. [17] Madhukar E. Navgire and Machhindra K. Lande, Selective Synthesis of 2-Aryl-1-arylmethyl-1H-benzimidazoles Using Carbon doped MoO3 as an Efficient Heterogeneous Catalyst, International Journal of Engineering Research & Technology, 2013, 2(10): 2313-2320. [18] Baig, A; Ng, F.T.T. A Single-Step Solid Acid-Catalyzed Process for the Production of Biodiesel from High Free Fatty Acid Feedstocks. Energy Fuels, 2010, 24: 4712-4720. [19] de Paiva, Jr.J.B; Monteiro, W.R; Zacharias, M.A; Rodrigues, J.A.J; Cortez, G.G. Characterization and catalytic behavior of MoO3/V2O5/Nb2O5 systems in isopropanol decomposition. Braz. J. Chem. Eng., 2006, 23: 517-524. [20] Rathod, S.B; Lande, M.K; Arbad, B.R. Synthesis, Characterization and Catalytic Application of MoO3/CeO2-ZrO2 Solid Heterogeneous Catalyst for the Synthesis of Benzimidazole Derivatives. Bull. Korean Chem. Soc., 2010, 31: 2835-2840. [21] Clark, J.H. Solid Acids for Green Chemistry. Acc. Chem. Res. 2002, 35: 791-797. [22] Okuhara, T. Water-Tolerant Solid Acid Catalysts. Chem. Rev. 2002, 102: 3641-3666. [23] Lande, M.K; Navgire, M.E; Rathod, S.B; Katkar, S.S; Yelwande, A.A; Arbad B.R. An efficient green synthesis of quinoxaline derivatives using carbon-doped MoO3-TiO2 as a heterogeneous catalyst. J. Ind. Eng. Chem. 2012, 18: 277-282. [24] M Navgire, M Lande, A Gambhire, S Rathod, D Aware, S R Bhitre, Nanocomposite materials and its photocatalytic activity Bull. Mater. Sci., 2011, 34(3): 535–541. [25] Kihlborg L, Ark. Kemi. 1963, 21: 557. [26] Taylor, X-ray metallography, New York: John Wiley, 1961, 678. [27] Qin Zhou, Shurong Fu, Min Zou, Yiming He, Ying Wu and Tinghua Wu, RSC Adv., 2015,5: 69388-69393. [28] V. Massarotti et al, J. Appl. Crystallogr. 1981, 14, 64. [29] A.Z.M. Badruddoza, A.S.H. Tay, P.Y. Tan, K. Hidajat, M.S. Uddin, Carboxymethyl-β-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: synthesis and adsorption studies, J. Hazard Mater. 2011, 185: 1177–1186. [30] C. Hui, C. Shen, T. Yang, L. Bao, J. Tian, H. Ding, C. Li, H.J. Gao, Large-scale Fe3O4 nanoparticles soluble in water synthesized by a facile method, J. Phys. Chem. C, 2008, 112: 11336–11339.