Bonding, Structure and Uses of Metals
Source: By:Author
DOI: https://doi.org/10.30564/jmmr.v6i1.5173
Abstract:[1]Rudgley, R., 1998. Lost civilizations of the Stone Age, Arrow Books: London, UK. pp. 129. [2]Wright, R.P., 2010. The Ancient Indus, C.U.P.: New York, USA. pp. 196. [3]Berger, D., et al., 2019. Isotope systematic and chemical composition of tin ingots from Mochlos (Crete) and other late Bronze Age sites in the eastern Mediterranean Sea: an ultimate key to tin provenance? PlosOne. 14(6), e0218326. [4]Sowerby, R., 1995. The Greeks, Routledge: London, UK. pp. 1-29. [5]Price, S., Thonemann, P., 2010. The birth of Classical Europe, Penguin: London, UK. pp. 46-48, 62-71. [6]Brun, E., Cotte, M., Wright, J., et al., 2016. Revealing metallic ink in Herculaneum papyri. Proceedings of the National Academy of Science. 113(4), 201519958. [7]Rumble, J. (ed.), 2021. CRC Handbook for Chemistry and Physics 102nd edn, CRC Press: Boca Raton, USA. section 4 and section 11. [8]Henderson, W., 2000. Main group chemistry, RSC: London, UK. pp. 59. [9]Jones, C.J., 2001. d- and f- block chemistry, RSC: London, UK. [10]Smartt, S.J., 2017. A kilonova as the electromagnetic counterpart to a gravitational wave source. Nature. 551, 75-79. [11]Tissot, F.L.H., Dauphas, N., Grossman, L., 2016. Origin of uranium isotope variations in early solar nebula condensates. Science Advances. 2, 1501400. [12]Schmidt, B., Sonnenberg, K., Steinhauer, S., et al., 2019. From polyhalides to polypseudohalides: Chemistry based on cyanogens bromide. Angewandte Chemie. 58(30), 10340-10344. [13]The Joint Formulary Committee, 2021. British National Formulary 80, Pharmaceutical Press: London, UK. pp. 972, 1154, 1352. [14]Frei, A., Zuegg, J., Elliott, A.G., et al., 2020. Metal complexes as a promising source of new antibiotics. Chemical Science. 11, 2627. [15]Everett, J., Lermyte, F., Brooks, J., et al., 2021. Biogenic metallic elements in the human brain? Science Advances. 7(24), 6707. [16]Graziano, B.J., Scott, T.R., Vollmer, M.V., et al., 2022. One-electron bonds in copper-aluminum and copper-gallium complexes. Chemical Science. 13, 6525-6531. [17]Bag, P., Porzelt, A., Altmann, P.J., et al., 2017. A stable neutral compound with an aluminum-aluminum double bond. Journal of the American Chemical Society. 139(41), 14384-14387. [18]Kong, R.Y., Crimmin, M.R., 2021. Chemoselective C-C σ bond activation of the most stable ring in biphenylene. Angewandte Chemie. 60(5), 2619-2623. [19]Polinski, M., 2014. Unusual structure, bonding and properties of a californium borate. Nature Chemistry. 6, 387-392. [20]Du, J.Zh., Seed, J.A., Berryman, V.E.J., et al., 2021. Exceptional uranium (VI)-nitride triple bond covalency from 15N nuclear magnetic resonance spectroscopy and quantum chemical analysis. Nature Communication. 12, 5649. [21]Dutkiewicz, M.S., Goodwin, C.A.P., Perfetti, M., et al., 2022. A terminal neptunium (V)-mono(oxo) complex. Nature Chemistry. 14, 342-349. [22]Niinomi, M., 2003. Recent research and development in titanium alloys for biomedical applications and health care goods. Science and Technology of Advanced Materials. 4(5), 445. [23]Wang, X.J., Xu, D.K., Wu, X.B., et al., 2018. What is going in magnesium alloys? Journal of Materiel Science & Technology. 34(2), 245-247. [24]You, S., Huang, Y., Kainer, K.U., 2017. Recent research and developments on wrought magnesium alloys. Journal of Magnesium and Alloys. 5(3), 239- 253. [25]Pereira, G.S., et al., 2022. Cerium conversion coating and sol-gel coating for corrosion protection of the WE43Mg alloy. Corrosion Science. 206, 110527. [26]Lagoudas, D.C. (ed.), 2008. Shape memory alloys – modeling and engineering applications, Springer: New York, USA. [27]Hart, G.L.W., 2021. Machine learning for alloys. Nature Reviews Materials. 6, 730-755. [28]Moore, W.J., 1972. Physical Chemistry 5th edn., Longman: London, UK. pp. 880. [29]Drude, P., 1900. To the electron theory of metals that the electricity conduction. Annals of Physics. 306, 566-613. (In German) [30]Ashcroft, A.N., Mermin, N.D., 1976. Solid State Physics, Harcourt College Publishers: Fort Worth, USA. pp. 20-21. [31]Sommerfeld, A., 1928. On the electron theory of metals based on Fermian statistics. Time in Physics. 47, 1-32. (In German) [32]Lang, P.F., 2021. Fermi energy, metals and the drift velocity of electrons. Chemical Physics Letters. 770, 138447. DOI: https://doi.org/10.1016/j.cplett.2021.138447 [33]Lang, P.F., 2022. Calculation of the Fermi energy and the bulk modulus of metals. Bulletin of Material Science. 45, 112-119. [34]Fishband, P.M., Gasiorowicz, S., Thornton, S.T., 1996. Physics for scientists and engineers 2nd edn., Prentice Hall: Upper Saddle River NJ, USA. pp. 735- 737. [35]Coulson, C.A., 1961. Valence 2nd edn., OUP: Oxford, UK. pp. 322-330. [36]Matsuoka, T., Shimizu, K., 2009. Direct observation of a pressure-induced metal to semiconductor transition in lithium. Nature. 458, 186-189. [37]Ma, Y., Eremets, M., Oganov, A.R., et. al., 2009. Transparent dense sodium. Nature. 458, 182-185. [38]Lang, P.F., 2018. Is a metal ions in a sea of electrons. Journal of Chemical Education. 95, 1787-1793. [39]Lang, P.F., Smith, B.C., 2010. Ionic radii for Group 1 and Group 2 halide, hydride, fluoride, oxide, sulfide, selenide and telluride crystals. Dalton Transactions. 39, 7786-7791. [40]Lang, P.F., Smith, B.C., 2014. Electronegativity effects and single covalent bond lengths of molecules in the gas phase. Dalton Transactions. 43, 8016-8025. [41]Lang, P.F., Smith, B.C., 2015. Metallic structure and bonding. World Journal of Chemical Education. 3(2), 30-35. [42]Donohue, J., 1974. The Structures of the Elements, Wiley: New York, USA. [43]Donnay, J.D., Ondik, H.M., (ed), 1973. Crystal Data Determinative Tables 3rd edn., United States Department of Commerce, National Bureau of Standards and Joint Committee on Powder Diffraction Standards: Washington DC, USA. 2. [44]Ondik, H.M., Mighell, A.D., 1978. Crystal Data Determinative Tables 3rd edn., United States Department of Commerce, National Bureau of Standards and Joint Committee on Powder Diffraction Standards: Washington DC, USA. 4. [45]Lang, P.F., 2019. Applying the soft sphere model to improve the understanding of bonding in transition metals. Heliyon. e03310. DOI: https://www.doi.10.1016/j.heliyon.2019.e03110 [46]Cotton, F.A., 1970. Chemical Applications of Group Theory 2nd edn., Wiley: New York,USA. pp. 170-177. [47]Jin, F., Xin, J.P., Guan, R.N., et al., 2021. Stabilizing a three-center single- electron metal-metal bond in a fullerene cage. Chemical Science. 12, 6890-6895. [48]Lang, P.F., 2017. An investigation into some important properties of transition metals. Chemical Physics Letters. 690, 5-13. [49]Lang, P.F., Smith, B.C., 2015. An equation to calculate internuclear distances of covalent, ionic and metallic lattices. Physical Chemistry Chemical Physics. 17, 3355-3369. [50]Addison, W.E., 1967. Structural principles in inorganic chemistry, Longman: London, UK. pp. 76. [51]Shriver, D.F., Atkins, P.W., Langford, C.H., 1990. Inorganic Chemistry, OUP: Oxford, UK. pp. 558-566. [52]Liu, Y.J., Han, Y.Zh., Zhang, Z.Y., et al., 2019. Low overpotential water oxidation at neutral pH catalyzed by a copper (II) porphyrin. Chemical Science. 10, 2613-2622. [53]Yao, S.Y., Zhang, X., Zhou, W., et al., 2017. Atomic layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science. 357(6349), 389-393. [54]Upham, D.C., Agarwal, V., Khechfe, A., et al., 2017. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science. 358(6385), 917-921. [55]Rahim, M.A., Tang, J.B., Christofferson, A.J., et al., 2022. Low temperature liquid platinum catalyst. Nature Chemistry. 14, 935-941. [56]He, T.O., Wang, W.C., Shi, F.L., et al., 2021. Mastering the surface strain of platinum catalysts for efficient electro-catalysis. Nature. 598, 76-81. [57]Kurogi, T., Won, J., Park, B., et al., 2018. Room temperature olefination of methane with titanium-carbon multiple bonds. Chemical Science. 9, 3376-3385. [58]Huo, H.H., Gorsline, B.J., Fu, G.C., 2020. Catalyst controlled doubly enamtopconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science. 367(6477), 559-564. [59]Chen, P., et al., 2016. Multi-metal nanoparticle synthesis. Science. 352(6293), 1565-1569. [60]Deng, M., Wang, L.Q., Hoeche, D., et al., 2021. Approaching “stainless magnesium” by Ca micro-alloying. Matererial Horizon. 8, 589-596. [61]Wood, P.A., et al., 2016. Capturing neon- the first experimental structure of neon trapped within a metal-organic environment. Chemical Communications. 52, 10048-10051. [62]Flint, C.D., Lang, P., 1981. Infrared and visible luminescence of TcX6 2- in cubic crystals. Journal of Luminescence. 24/25, 301-304. [63]Hoddeson, L., Baym, G., Eckert, M., 1987. The development of the quantum mechanical electron theory ofmetals 1928-1933. Review of Modern Physics. 5991, 287-327. [64]Ziman, J.M. (ed.), 1971. Physics of Metals Vol. 1 Electrons, CUP: Cambridge, UK. [65]Hersch, P.B. (ed.), 1976. Physics of Metals Vol. 2 Defects, CUP: Cambridge, UK. [66]Kittel, C., 2005. Introduction to Solid State Physics 8th edn., Wiley: New York, USA. [67] Ibach, H., Luth, H., 2009. Solid State Physics 4th edn., Springer: Heidelberg, Germany