Recent Progress in Superhydrophobic Coatings Using Molecular Dynamics Simulations and Experimental Techniques
Source: By:Author(s)
DOI: https://doi.org/10.30564/nmms.v4i1.4768
Abstract:[1]Sethi, S.K., Manik, G., 2018. Recent Progress in Super Hydrophobic/Hydrophilic Self-Cleaning Surfaces for Various Industrial Applications: A Review. Polymer Plastics Technology & Engineering. 57, 1932-1952. DOI: https://doi.org/10.1080/03602559.2018.1447128 [2]Sethi, S.K., Gogoi, R., Manik, G., 2021. Plastics in Self-Cleaning Applications. Reference Module in Materials Science and Materials Engineering. DOI: https://doi.org/10.1016/B978-0-12-820352-1.00113-9 [3]Si, Y., Guo, Z., 2015. Superhydrophobic nanocoatings: from materials to fabrications and to applications. Nanoscale. 7, 5922-5946. DOI: https://doi.org/10.1039/C4NR07554D [4]Bhushan, B., Jung, Y.C., 2011. Natural and biomi-metic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science. 56, 1-108. DOI: https://doi.org/10.1016/j.pmatsci.2010.04.003 [5]Vinogradova, O.I., Dubov, A.L., 2012. Superhydrophobic textures for microfluidics. Mendeleev Communications. 22, 229-236. DOI: https://doi.org/10.1016/j.mencom.2012.09.001 [6]Wang, F., Li, S., Wang, L., 2017. Fabrication of artificial super-hydrophobic lotus-leaf-like bamboo surfaces through soft lithography. Colloids & Surfaces A Physicochemical & Engineering Aspects. 513, 389- 395. DOI: https://doi.org/10.1016/j.colsurfa.2016.11.001 [7]Barthlott, W., Neinhuis, C., 1997. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 202, 1-8. DOI: https://doi.org/10.1007/s004250050096 [8]Bixler, G.D., Bhushan, B., 2013. Fluid drag reduction and efficient self-cleaning with rice leaf and butterfly wing bioinspired surfaces. Nanoscale. 5, 7685-7710. DOI: https://doi.org/10.1039/C3NR01710A [9]Liu, M., Wang, S., Jiang, L., 2017. Nature-inspired superwettability systems. Nature Reviews Materials. 27(2), 1-17. DOI: https://doi.org/10.1038/natrevmats.2017.36 [10]Chen, Y.P., Wang, H.W., Yao, Q.F., et al., 2017. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance. Journal of Materials Science. 52, 7428-7438. DOI: https://doi.org/10.1007/s10853-017-0976-y [11]Huang, J.A., Zhang, Y.L., Zhao, Y.Q., et al., 2016. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale. 8, 11487-11493. DOI: https://doi.org/10.1039/C6NR03285K [12]Bixler, G.D., Theiss, A., Bhushan, B., et al., 2014. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. Journal of Colloid and Interface Science. 419, 114-133. DOI: https://doi.org/10.1016/j.jcis.2013.12.019 [13]Han, Z., Fu, J., Wang, Z., et al., 2017. Long-term durability of superhydrophobic properties of butterfly wing scales after continuous contact with water. Colloids & Surfaces A Physicochemical & Engineering Aspects. 518, 139-144. DOI: https://doi.org/10.1016/j.colsurfa.2017.01.030 [14]Bixler, G.D., Bhushan, B., 2012. Bioinspired rice leaf and butterfly wing surface structures combining shark skin and lotus effects. Soft Matter. 8, 11271- 11284. DOI: https://doi.org/10.1039/C2SM26655E [15]Gao, X., Jiang, L., 2004. Water-repellent legs of water striders. Nature. 4327013(432), 36. DOI: https://doi.org/10.1038/432036a [16]Bhushan, B., Her, E.K., 2010. Fabrication of superhydrophobic surfaces with high and low adhesion inspired from rose petal. Langmuir. 26, 8207-8217. DOI: https://doi.org/10.1021/la904585j [17]Bhushan, B., Nosonovsky, M., 2010. The rose petal effect and the modes of superhydrophobicity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 368, 4713-4728. DOI: https://doi.org/10.1098/rsta.2010.0203 [18]Shao, Y., Zhao, J., Fan, Y., et al., 2020. Shape memory superhydrophobic surface with switchable transition between “Lotus Effect” to “Rose Petal Effect”. Chemical Engineering Journal. 382, 122989. DOI: https://doi.org/10.1016/j.cej.2019.122989 [19]Liu, K., Du, J., Wu, J., et al., 2012. Superhydrophobic gecko feet with high adhesive forces towards water and their bio-inspired materials. Nanoscale. 4, 768-772. DOI: https://doi.org/10.1039/C1NR11369K [20]Autumn, K., Liang, Y.A., Hsieh, S.T., et al., 2000. Adhesive force of a single gecko foot-hair. Nature. 405, 681-685. DOI: https://doi.org/10.1038/35015073 [21]Sethi, S.K., Manik, G., Sahoo, S.K., 2019. Fundamentals of superhydrophobic surfaces. in Superhydrophobic Polymer Coatings. 3-29. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-816671-0.00001-1 [22]Wenzel, R.N., 1936. Resistance of Solid Surfaces to wetting by water. Industrial and Engineering Chemistry. 28, 988-994. DOI: https://doi.org/10.1021/ie50320a024 [23]Cassie, A.B.D., Baxter, S., 1944. Wettability of porous surfaces. Transactions of the Faraday Society. 40, 546. DOI: https://doi.org/10.1039/TF9444000546 [24]Li, Y., Chen, Sh.Sh., Wu, M.Ch., et al., 2014. All Spraying Processes for the Fabrication of Robust, Self-Healing, Superhydrophobic Coatings. Advanced Materials. 26, 3344-3348. DOI: https://doi.org/10.1002/adma.201306136 [25]Cai, C.J., Teng, S.C., Guo, J., et al., 2016. Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water. Surface & Coatings Technology. 307, 366-373. DOI: https://doi.org/10.1016/j.surfcoat.2016.09.009 [26]Huang, Y., Sarkar, D.K., Grant Chen, X., 2015. Su-perhydrophobic aluminum alloy surfaces prepared by chemical etching process and their corrosion resistance properties. Applied Surface Science. 356, 1012- 1024. DOI: https://doi.org/10.1016/j.apsusc.2015.08.166 [27]Qian, B., Shen, Z., 2005. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates. Langmuir. 21, 9007-9009. DOI: https://doi.org/10.1021/la051308c [28]Han, M., Go, S., Ahn, Y., 2012. Fabrication of Superhydrophobic Surface on Magnesium Substrate by Chemical Etching. Bulletin- Korean Chemical Society. 33, 1363-1366. DOI: https://doi.org/10.5012/bkcs.2012.33.4.1363 [29]Shiu, J.Y., Kuo, C.W., Chen, P., et al., 2004. Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography. Chemistry of Materials. 16, 561- 564. DOI: https://doi.org/10.1021/cm034696h [30]Pozzato, A., Zilio, S.D., Fois, G., et al., 2006. Superhydrophobic surfaces fabricated by nanoimprint lithography. Microelectronic Engineering. 83, 884- 888. DOI: https://doi.org/10.1016/j.mee.2006.01.012 [31]Zhou, Z. & Wu, X. F., 2015. Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation. Materials Letters. 160, 423-427. DOI: https://doi.org/10.1016/j.matlet.2015.08.003 [32]Zhu, M., Zuo, W., Yu, H., et al., 2006. Superhydrophobic surface directly created by electrospinning based on hydrophilic material. Journal of Materials Science. 4112(41), 3793-3797. DOI: https://doi.org/10.1007/s10853-005-5910-z [33]Chen, T.L., Huang, Ch.Y., Xie, Y.T., et al., 2019. Bioinspired Durable Superhydrophobic Surface from a Hierarchically Wrinkled Nanoporous Polymer. Acs Applied Materials & Interfaces. 11, 40875-40885. DOI: https://doi.org/10.1021/acsami.9b14325 [34]Li, Y., Dai, S., John, J., et al., 2013. Superhydrophobic surfaces from hierarchically structured wrinkled polymers. Acs Applied Materials & Interfaces. 5, 11066-11073. DOI: https://doi.org/10.1021/am403209r [35]Ma, M.L., Mao, Y., Gupta, M., et al., 2005. Superhydrophobic Fabrics Produced by Electrospinning and Chemical Vapor Deposition. DOI: https://doi.org/10.1021/MA0511189 [36]Sun, W., Wang, L., Yang, Z., et al., 2017. Fabrication of polydimethylsiloxane-derived superhydrophobic surface on aluminium via chemical vapour deposition technique for corrosion protection. Corrosion Science. 128, 176-185. DOI: https://doi.org/10.1016/j.corsci.2017.09.005 [37]Şimşek, B., Karaman, M., 2020. Initiated chemical vapor deposition of poly(hexafluorobutyl acrylate) thin films for superhydrophobic surface modification of nanostructured textile surfaces. Journal of Coatings Technology and Research. 17, 381-391. DOI: https://doi.org/10.1007/s11998-019-00282-7 [38]Li, Y., Liu, F., Sun, J.A., 2009. Facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings. Chemical Communications. 0, 2730. DOI: https://doi.org/10.1039/B900804G [39]Lopez-Torres, D., Elosua, C., Hernaez, M., et al., 2015. From superhydrophilic to superhydrophobic surfaces by means of polymeric Layer-by-Layer films. Applied Surface Science. 351, 1081-1086. DOI: https://doi.org/10.1016/j.apsusc.2015.06.004 [40]Gwon, T.M., Kim, J.H., Choi, G.J., et al., 2016. Mechanical interlocking to improve metal-polymer adhesion in polymer-based neural electrodes and its impact on device reliability. Journal of Materials Science. 51, 6897-6912. DOI: https://doi.org/10.1007/s10853-016-9977-5 [41]Lee, S.H., Lee, J.H., Park, Ch.W., et al., 2014. Continuous fabrication of bio-inspired water collecting surface via roll-type photolithography. International Journal of Precision Engineering and Manufacturing-Green Technology. 12(1), 119-124. DOI: https://doi.org/10.1007/s40684-014-0016-1 [42]Zhang, Z.H., Wang, H.J., Liang, Y.H., et al., 2018. One-step fabrication of robust superhydrophobic and superoleophilic surfaces with self-cleaning and oil/ water separation function. Scientific Reports. 81(8), 1-12. DOI: https://doi.org/10.1038/s41598-018-22241-9 [43]Polizos, G., Jang, G.G., Smith, D.B., et al., 2018. Transparent superhydrophobic surfaces using a spray coating process. Solar Energy Materials and Solar Cells. 176, 405-410. DOI: https://doi.org/10.1016/j.solmat.2017.10.029 [44]Varshney, P., Mohapatra, S.S., 2018. Durable and regenerable superhydrophobic coatings for brass surfaces with excellent self-cleaning and anti-fogging properties prepared by immersion technique. Tribology International. 123, 17-25. DOI: https://doi.org/10.1016/j.triboint.2018.02.036 [45]Han, J., Cai, M., Lin, Y., et al., 2018. Comprehensively durable superhydrophobic metallic hierarchi-cal surfaces Via tunable micro-cone design to protect functional nanostructures. Rsc Advances. 8, 6733- 6744. DOI: https://doi.org/10.1039/C7RA13496G [46]Feng, J., Tuominen, M.T., Rothstein, J.P., 2011. Hierarchical Superhydrophobic Surfaces Fabricated by Dual-Scale Electron-Beam-Lithography with Well-Ordered Secondary Nanostructures. Advanced Functional Materials. 21, 3715-3722. DOI: https://doi.org/10.1002/adfm.201100665 [47]Radwan, A.B., Mohamed, A.M.A., Abdullah, A.M., et al., 2016. Corrosion protection of electrospun PVDF-ZnO superhydrophobic coating. Surface & Coatings Technology. 289, 136-143. DOI: https://doi.org/10.1016/j.surfcoat.2015.12.087 [48]Fu, C.C., Grimes, A., Long, M., et al., 2009. Tunable Nanowrinkles on Shape Memory Polymer Sheets. Advanced Materials. 21, 4472-4476. DOI: https://doi.org/10.1002/adma.200902294 [49]Genzer, J., Groenewold, J., 2006. Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter. 2, 310-323. DOI: https://doi.org/10.1039/B516741H [50]Manna, U., Carter, M.C.D., Lynn, D.M., 2013. “Shrink-to-Fit” Superhydrophobicity: Thermally-Induced Microscale Wrinkling of Thin Hydrophobic Multilayers Fabricated on Flexible Shrink-Wrap Substrates. Advanced Materials. 25, 3085-3089. DOI: https://doi.org/10.1002/adma.201300341 [51]Huntington, M.D., Engel, C.J., Hryn, A.J., et al., 2013. Polymer nanowrinkles with continuously tunable wavelengths. ACS Applied Materials & Interfaces. 5, 6438-6442. DOI: https://doi.org/10.1021/am402166d [52]Scarratt, L.R.J., Hoatson, B.S., Wood, E.S., et al., 2016. Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF. ACS Applied Materials & Interfaces. 8, 6743-6750. DOI: https://doi.org/10.1021/acsami.5b12165 [53]Rezaei, S., Manoucheri, I., Moradian, R., et al., 2014. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication. Chemical Engineering Journal. 252, 11-16. DOI: https://doi.org/10.1016/j.cej.2014.04.100 [54]Xu, S., Wang, Q., Wang, N., 2021. Chemical Fabrication Strategies for Achieving Bioinspired Superhydrophobic Surfaces with Micro and Nanostructures: A Review. Advanced Engineering Materials. 23, 2001083. DOI: https://doi.org/10.1002/adem.202001083 [55]Kitabata, M., Taddese, T., Okazaki, S., 2018. Molecular Dynamics Study on Wettability of Poly(vinylidene fluoride) Crystalline 8and Amorphous Surfaces. Langmuir. 34, 12214-12223. DOI: https://doi.org/10.1021/acs.langmuir.8b02286 [56]Wang, F.J., Li, C.Q., Tan, Z.S., et al., 2013. PVDF surfaces with stable superhydrophobicity. Surface & Coatings Technology. 222, 55-61. DOI: https://doi.org/10.1016/j.surfcoat.2013.02.004 [57]Kumar, N., Manik, G., 2016. Molecular dynamics simulations of polyvinyl acetate-perfluorooctane based anti-stain coatings. Polymer (Guildf). 100, 194-205. DOI: https://doi.org/10.1016/j.polymer.2016.08.019 [58]Cui, Z., Wang, Q., Xiao, Y., et al., 2008. The stability of superhydrophobic surfaces tested by high speed current scouring. Applied Surface Science. 254, 2911-2916. DOI: https://doi.org/10.1016/j.apsusc.2007.09.062 [59]Saleema, N., Sarkar, D.K., Gallant, D., et al., 2011. Chemical nature of superhydrophobic aluminum alloy surfaces produced via a one-step process using fluoroalkyl-silane in a base medium. ACS Applied Materials & Interfaces. 3, 4775-4781. DOI: https://doi.org/10.1021/am201277x [60]Wang, Y., Liu, X., Zhang, H., et al., 2015. Superhydrophobic surfaces created by a one-step solution-immersion process and their drag-reduction effect on water. Rsc Advances. 5, 18909-18914. DOI: https://doi.org/10.1039/C5RA00941C [61]Liu, H., Chen, T., Yang, H., et al., 2016. Biomimetic fabrication of robust self-assembly superhydrophobic surfaces with corrosion resistance properties on stainless steel substrate. Rsc Advances. 6, 43937-43949. DOI: https://doi.org/10.1039/C6RA06500G [62]Chen, W., Fadeev, A.Y., Hsieh, M.C., et al., 1999. Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples. DOI: https://doi.org/10.1021/LA990074S [63]Zhai, L., Cebeci, F.C., Cohen, R.E., et al., 2004. Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Letters. 4, 1349-1353. DOI: https://doi.org/10.1021/nl049463j [64]Xue, C.H., Jia, S.T., Zhang, J., et al., 2008. Preparation of superhydrophobic surfaces on cotton textiles. Science & Technology of Advanced Materials. 9, 35008. DOI: https://doi.org/10.1088/1468-6996/9/3/035008 [65]Peng, P.P., Ke, Q., Zhou, G., et al., 2013. Fabrication of microcavity-array superhydrophobic surfaces using an improved template method. Journal of Colloidand Interface Science. 395, 326-328. DOI: https://doi.org/10.1016/j.jcis.2012.12.036 [66]Rahmawan, Y., Xu, L., Yang, S., 2013. Self-assembly of nanostructures towards transparent, superhydrophobic surfaces. Journal of Materials Chemistry A. 1, 2955-2969. DOI: https://doi.org/10.1039/C2TA00288D [67]Ge, D., Yang, L., Zhang, Y., et al., 2014. Transparent and superamphiphobic surfaces from one-step spray coating of stringed silica nanoparticle/sol solutions. Particle & Particle Systems Characterization. 31, 763-770. DOI: https://doi.org/10.1002/ppsc.201300382 [68]Yang, C., Tartaglino, U., Persson, B.N.J., 2006. Influence of surface roughness on superhydrophobicity. Physical Review Letters. 97, 1-4. DOI: https://doi.org/10.1103/PhysRevLett.97.116103 [69]Wenzel, R.N., 1936. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry. 28, 988-994. DOI: https://doi.org/10.1021/ie50320a024 [70]Agrawal, G., Samal, S.K., Sethi, S.K., et al., 2019. Microgel/silica hybrid colloids: Bioinspired synthesis and controlled release application. Polymer (Guildf). 178, 121599. DOI: https://doi.org/10.1016/j.polymer.2019.121599 [71]Maurya, A.K., Gogoi, R., Sethi, S.K., et al., 2021. A combined theoretical and experimental investigation of the valorization of mechanical and thermal properties of the fly ash-reinforced polypropylene hybrid composites. Journal of Materials Science. 56, 16976- 16998. DOI: https://doi.org/10.1007/s10853-021-06383-2 [72]Shankar, U., Sethi, S.K., Singh, B.P., et al., 2021. Optically transparent and lightweight nanocomposite substrate of poly(methyl methacrylate-co-acrylonitrile)/MWCNT for optoelectronic applications: an experimental and theoretical insight. Journal of Materials Science. 5630(56), 17040-17061. DOI: https://doi.org/10.1007/s10853-021-06390-3 [73]Saini, A., Yadav, C., Sethi, S.K., et al., 2021. Microdesigned Nanocellulose-Based Flexible Antibacterial Aerogel Architectures Impregnated with Bioactive Cinnamomum cassia. ACS Applied Materials & Interfaces. 13, 4874-4885. DOI: https://doi.org/10.1021/acsami.0c20258 [74]Sethi, S.K. et al., 2020. Fabrication and Analysis of ZnO Quantum Dots Based Easy Clean Coating: A Combined Theoretical and Experimental Investigation. ChemistrySelect. 5, 8942-8950. DOI: https://doi.org/10.1002/slct.202001092 [75]Gogoi, R., Sethi, S.K., Manik, G., 2021. Surface functionalization and CNT coating induced improved interfacial interactions of carbon fiber with polypropylene matrix: A molecular dynamics study. Applied Surface Science. 539. DOI: https://doi.org/10.1016/j.apsusc.2020.148162 [76]Sethi, S.K., Kadian, S., Manik, G., 2022. A Review of Recent Progress in Molecular Dynamics and Coarse-Grain Simulations Assisted Understanding of Wettability. Archives of Computational Methods in Engineering. 1, 1-27. DOI: https://doi.org/10.1007/s11831-021-09689-1 [77]Zielkiewicz, J., 2005. Structural properties of water: Comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. The Journal of Chemical Physics. 123, 104501. DOI: https://doi.org/10.1063/1.2018637 [78]Hautman, J., Klein, M.L., 1991. Microscopic wetting phenomena. Physical Review Letters. 67, 1763-1766. DOI: https://doi.org/10.1103/PhysRevLett.67.1763 [79]Malani, A., Raghavanpillai, A., Wysong, E.B., et al., 2012. Can dynamic contact angle be measured using molecular modeling? Physical Review Letters. 109, 1-5. DOI: https://doi.org/10.1103/PhysRevLett.109.184501 [80]Khalkhali, M., Kazemi, N., Zhang, H., et al., 2017. Wetting at the nanoscale: A molecular dynamics study. Journal of Chemical Physics. 146. DOI: https://doi.org/10.1063/1.4978497 [81]Sethi, S.K., Soni, L., Manik, G., 2018. Component compatibility study of poly(dimethyl siloxane) with poly(vinyl acetate) of varying hydrolysis content: An atomistic and mesoscale simulation approach. Journal of Molecular Liquids. 272, 73-83. DOI: https://doi.org/10.1016/j.molliq.2018.09.048 [82]Sethi, S.K., Soni, L., Shankar, U., et al., 2020. A molecular dynamics simulation study to investigate poly(vinyl acetate)-poly(dimethyl siloxane) based easy-clean coating: An insight into the surface behavior and substrate interaction. Journal of Molecular Structure. 1202, 127342. DOI: https://doi.org/10.1016/j.molstruc.2019.127342 [83]Sethi, S.K., Shankar, U., Manik, G., 2019. Fabrication and characterization of non-fluoro based transparent easy-clean coating formulations optimized from molecular dynamics simulation. Progress in Organic Coatings. 136. DOI: https://doi.org/10.1016/j.porgcoat.2019.105306 [84]Sethi, S.K., Manik, G., 2021. A combined theoretical and experimental investigation on the wettability of MWCNT filled PVAc-g-PDMS easy-clean coating.Progress in Organic Coatings. 151, 106092. DOI: https://doi.org/10.1016/j.porgcoat.2020.106092 [85]Sethi, S.K., Singh, M., Manik, G., 2020. A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Molecular Systems Design & Engineering. DOI: https://doi.org/10.1039/D0ME00068J [86]Xu, K., Zhang, J.Ch., Hao, X.L., et al., 2018. Wetting properties of defective graphene oxide: A molecular simulation study. Molecules. 23, 1-8. DOI: https://doi.org/10.3390/molecules23061439 [87]Huang, C., Xu, F., Sun, Y., 2017. Effects of morphology, tension and vibration on wettability of graphene: A molecular dynamics study. Computational Materials Science. 139, 216-224. DOI: https://doi.org/10.1016/j.commatsci.2017.07.017 [88]Zimmermann, J., Reifler, F.A., Fortunato, G., et al., 2008. A simple, one-step approach to durable and robust superhydrophobic textiles. Advanced Functional Materials. 18, 3662-3669. DOI: https://doi.org/10.1002/adfm.200800755 [89]Mohseni, M., Abdollahy, M., Poursalehi, R., et al., 2018. Quantifying the spreading factor to compare the wetting properties of minerals at molecular level - case study : sphalerite surface. 54, 646-656. DOI: https://doi.org/10.5277/ppmp1856 [90]Li, X.M., Reinhoudt, D., Crego-Calama, M., 2007. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews. 36, 1350. DOI: https://doi.org/10.1039/B602486F [91]Bhushan, B., Jung, Y.C., 2011. Natural and biomimetic artificial surfaces for superhydrophobicity, self-cleaning, low adhesion, and drag reduction. Progress in Materials Science. 56, 1-108. DOI: https://doi.org/10.1016/j.pmatsci.2010.04.003 [92]Aegerter, M.A., Almeida, R., Soutar, A., et al., 2008. Coatings made by sol-gel and chemical nanotechnology. Journal of SOL-GEL Science and Technology. 472(47), 203-236. DOI: https://doi.org/10.1007/s10971-008-1761-9 [93]Miljkovic, N., Enright, R., Wang, E.N., 2013. Modeling and optimization of superhydrophobic condensation. Journal of Heat Transfer. 135. DOI: https://doi.org/10.1115/1.4024597 [94]Boreyko, J.B., Chen, C.H., 2009. Self-propelled dropwise condensate on superhydrophobic surfaces. Physical Review Letters. 103, 184501. DOI: https://doi.org/10.1103/PhysRevLett.103.184501 [95]Sananda, D., Biplab, G., 2016. Fluoride Fact on Human Health and Health Problems: A Review. Medical & Clinical Reviews. 2. DOI: https://doi.org/10.21767/2471-299X.1000011 [96] Wang, W., Lockwood, K., Boyd, L.M., et al., 2016. Superhydrophobic Coatings with Edible Biowaxes for Reducing or Eliminating Liquid Residues of Foods and Drinks in Containers. ACS Applied Materials & Interfaces. 8, 18664-18668. DOI: https://doi.org/10.1021/acsami.6b06958