Synthesis, Characterization and Impedance Analysis of CalciumDoped Zinc Oxide Nanoparticles
Source: By:K. N. Ganesha, H Chandrappa, S R Kumaraswamy, V Annadurai, H. Somashekarappa, R Somashekar
DOI: https://doi.org/10.30564/nmms.v5i1.5677
Abstract:The calcium-doped ZnO nanoparticles, Zn1-xCaxO (x = 0, 0.025, 0.05, 0.075) were prepared by the solution combustion method. The synthesized nanoparticles were characterized by various techniques such as XRD, FTIR, Raman, FESEM-EDX, PL, Impedance, and UV-Vis. The Rietveld refinement of the X-ray diffractogram yields the crystalline structure and lattice parameters. Also, the XRD analysis shows that the substitution of Ca into ZnO does not alter the Wurtzite structure of ZnO. The crystallite size of the samples, calculated using the Scherer equation, was found to be between 46 nm and 92 nm. FTIR spectra detect the ZnO-related vibration modes of the samples. The FESEM morphological images suggest the spherical shape of the synthesized nanoparticles. The EDAX spectra identify the presence of Zn, Ca, and O atoms in the samples. The Raman active modes of the ZnO phase were identified by Raman spectral analysis. The analysis of Photoluminescence (PL) spectra gives information about the UV emission and other visible bands corresponding to violet, blue, and green emission representing different intrinsic defects in synthesized nanoparticles. Using UV-vis spectroscopy, the optical transparency and band gap values were examined. The energy band gap obtained by Tauc’s plot was decreased with the increase in Ca doping. Impedance analysis shows that the grain conductivity increased with the increase in dopant concentration. Contrarily, the total conductivity decreased with the increasing doping concentration due to increased grain boundary resistance. The proposed work demonstrates the changes in microstructure, electrical conductivity, and optical bandgap energy with Ca-doping. These synthesized Ca-doped ZnO nanoparticles could be promising materials for photocatalytic applications.
References:[1] Chao, J., Chen, Y., Xing, S., et al., 2019. Facile fabrication of ZnO/C nanoporous fibers and ZnO hollow spheres for high performance gas sensor. Sensors and Actuators B: Chemical. 298, 126927. DOI: https://doi.org/10.1016/j.snb.2019.126927 [2] Franco, M.A., Conti, P.P., Andre, R.S., et al., 2022. A review on chemiresistive ZnO gas sensors. Sensors and Actuators Reports. 4, 100100. DOI: https://doi.org/10.1016/j.snr.2022.100100 [3] Kulkarni, D.R., Malode, S.J., Prabhu, K.K., et al.,2020. Development of a novel nanosensor using Ca-doped ZnO for antihistamine drug. Materials Chemistry and Physics. 246, 122791. DOI: https://doi.org/10.1016/j.matchemphys. 2020.122791 [4] Alshammari, A.S., Khan, Z.R., Gandouzi, M., et al., 2022. Tailoring the optical properties and the UV detection performance of sol-gel deposited ZnO nanostructured thin films via Cd and Na co-doping. Optical Materials. 126, 112146. DOI: https://doi.org/10.1016/j.optmat.2022.112146 [5] Li, L.E., Demianets, L.N.. 2008. Room-temperature excitonic lasing in ZnO tetrapod-like crystallites. Optical Materials. 30(7), 1074-1078. DOI: https://doi.org/10.1016/j.optmat.2007.05.013 [6] Pandey, R.K., Dutta, J., Brahma, S., et al., 2021. Review on ZnO-based piezotronics and piezoelectric nanogenerators: Aspects of piezopotential and screening effect. Journal of Physics: Materials. 4(4), 044011. DOI: https://dx.doi.org/10.1088/2515-7639/ac130a [7] Sahoo, R., Mishra, S., Ramadoss, A., et al., 2020. An approach towards the fabrication of energy harvesting device using Ca-doped ZnO/PVDF-TrFE composite film. Polymer. 205, 122869. DOI: https://doi.org/10.1016/j.polymer.2020.122869 [8] Liu, J., Wang, Y., Ma, J., et al., 2019. A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. Journal of Alloys and Compounds. 783, 898-918. DOI: https://doi.org/10.1016/j.jallcom.2018.12.330 [9] Kim, I., Viswanathan, K., Kasi, G., et al., 2022. ZnO nanostructures in active antibacterial food packaging: Preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges. Food Reviews International. 38(4), 537-565. DOI: https://doi.org/10.1080/87559129.2020.1737709 [10] Kumar, R., Umar, A., Kumar, G., et al., 2017. Antimicrobial properties of ZnO nanomaterials: A review. Ceramics International. 43(5), 3940-3961. DOI: https://doi.org/10.1016/j.ceramint.2016.12.062 [11] Hameed, A., Fatima, G.R., Malik, K., et al., 2019. Scope of nanotechnology in cosmetics: Dermatology and skin care products. Journal of Medicinal Chemical Science. 2(1), 9-16. DOI: https://doi.org/10.26655/jmchemsci.2019.6.2 [12] Safdar, M., Waqas, M., Jabeen, N., et al., 2022. Fabrication of In2Te3 nanowalls garnished with ZnO nanoparticles and their field emission behavior. Materials Chemistry and Physics. 290, 126510. DOI: https://doi.org/10.1016/j.matchemphys. 2022.126510 [13] Özgür, Ü., Alivov, Y.I., Liu, C., et al., 2005. A comprehensive review of ZnO materials and devices. Journal of Applied Physics. 98(4), 11. DOI: https://doi.org/10.1063/1.1992666 [14] Selvi, K.T., Mangai, K.A., Priya, M., et al., 2020. Investigation of the dielectric and impedance properties of ZnO/MgO nanocomposite. Physica B: Condensed Matter. 594, 412355. DOI: https://doi.org/10.1016/j.physb.2020.412355 [15] Sulciute, A., Nishimura, K., Gilshtein, E., et al., 2021. ZnO nanostructures application in electrochemistry: Influence of morphology. The Journal of Physical Chemistry C. 125(2), 1472-1482. DOI: https://doi.org/10.1021/acs.jpcc.0c08459 [16] Umavathi, S., AlSalhi, M.S., Devanesan, S., et al., 2020. Synthesis and characterization of ZnO and Ca-ZnO nanoparticles for potential antibacterial activity and plant micronutrients. Surfaces and Interfaces. 21, 100796. DOI: https://doi.org/10.1016/j.surfin.2020.100796 [17] Mahajan, P., Singh, A., Arya, S., 2020. Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds. 814, 152292. DOI: https://doi.org/10.1016/j.jallcom.2019.152292 [18] Abed, C., Bouzidi, C., Elhouichet, H., et al., 2015. Mg doping induced high structural quality of sol-gel ZnO nanocrystals: Application in photocatalysis. Applied Surface Science. 349, 855-863. DOI: https://doi.org/10.1016/j.apsusc.2015.05.078 [19] Liu, S., Zhu, L., Cao, W., et al., 2021. Defect-related optical properties of Mg-doped ZnO nanoparticles synthesized via low temperature hydrothermal method. Journal of Alloys and Compounds. 858, 157654. DOI: https://doi.org/10.1016/j.jallcom.2020.157654 [20] Suwanboon, S., Amornpitoksuk, P., Sukolrat, A., 2011. Dependence of optical properties on doping metal, crystallite size and defect concentration of M-doped ZnO nanopowders (M = Al, Mg, Ti). Ceramics International. 37(4), 1359-1365. DOI: https://doi.org/10.1016/j.ceramint.2010.12.010 [21] Ahmad, F., Maqsood, A., 2021. Structural, electric modulus and complex impedance analysis of ZnO at low temperatures. Materials Science and Engineering: B. 273, 115431. DOI: https://doi.org/10.1016/j.mseb.2021.115431 [22] Kuo, C.L., Wang, C.L., Ko, H.H., et al., 2010. Synthesis of zinc oxide nanocrystalline powders for cosmetic applications. Ceramics International. 36(2), 693-698. DOI: https://doi.org/10.1016/j.ceramint.2009.10.011 [23] Hameed, A.S.H., Karthikeyan, C., Sasikumar, S., et al., 2013. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. Journal of Materials Chemistry B. 1(43), 5950-5962. DOI: http://dx.doi.org/10.1039/c3tb21068e [24] Pathak, T.K., Kumar, A., Swart, C.W., et al., 2016. Effect of fuel content on luminescence and antibacterial properties of zinc oxide nanocrystalline powders synthesized by the combustion method. RSC Advances. 6(100), 97770-97782. DOI: http://dx.doi.org/10.1039/C6RA22341A [25] El Mir, L., 2017. Luminescence properties of calcium doped zinc oxide nanoparticles. Journal of Luminescence. 186, 98-102. DOI: https://doi.org/10.1016/j.jlumin.2017.02.029 [26] Karthikeyan, B., Pandiyarajan, T., Mangaiyarkarasi, K., 2011. Optical properties of sol-gel synthesized calcium doped ZnO nanostructures. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 82(1), 97-101.DOI: https://doi.org/10.1016/j.saa.2011.07.005 [27] Morales, A.E., Zaldivar, M.H., Pal, U., 2006. Indium doping in nanostructured ZnO through low-temperature hydrothermal process. Optical Materials. 29(1), 100-104. DOI: https://doi.org/10.1016/j.optmat.2006.03.010 [28] Ilager, D., Malode, S.J., Kulkarni, R.M., et al., 2022. Electrochemical sensor based on Cadoped ZnO nanostructured carbon matrix for algicide dichlone. Journal of Hazardous Materials Advances. 7, 100132. DOI: https://doi.org/10.1016/j.hazadv.2022.100132 [29] Ilager, D., Shetti, N.P., Malladi, R.S., et al., 2021. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. Journal of Molecular Liquids. 322, 114552. DOI: https://doi.org/10.1016/j.molliq.2020.114552 [30] Jaballah, S., Benamara, M., Dahman, H., et al., 2020. Formaldehyde sensing characteristics of calcium-doped zinc oxide nanoparticles-based gas sensor. Journal of Materials Science: Materials in Electronics. 31, 8230-8239. DOI: https://doi.org/10.1007/s10854-020-03358-y [31] Varma, A., Mukasyan, A.S., Rogachev, A.S., et al., 2016. Solution combustion synthesis of nanoscale materials. Chemical Reviews. 116(23), 14493-14586. DOI: https://doi.org/10.1021/acs.chemrev.6b00279 [32] Cheruku, R., Vijayan, L., Govindaraj, G., 2012. Electrical relaxation studies of solution combustion synthesized nanocrystalline Li2NiZrO4 material. Materials Science and Engineering: B. 177(11), 771-779. DOI: https://doi.org/10.1016/j.mseb.2012.04.005 [33] Jain, S.R., Adiga, K.C., Verneker, V.P., 1981. A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures. Combustionand Flame. 40, 71-79. DOI: https://doi.org/10.1016/0010-2180(81)90111-5 [34] Pathak, L.C., Singh, T.B., Das, S., et al., 2002. Effect of pH on the combustion synthesis of nano-crystalline alumina powder. Materials Letters. 57(2), 380-385. DOI: https://doi.org/10.1016/S0167-577X(02)00796-6 [35] P. Scherrer, Nachr. Ges. Wiss. 1918. Göttinger nachrichten math (German) [Göttingen news math]. Phys. Kl. 26, 98-100. [36] Cheng, B., Xiao, Y., Wu, G., et al., 2004. The vibrational properties of one-dimensional ZnO: Ce nanostructures. Applied Physics Letters. 84(3), 416-418. DOI: https://doi.org/10.1063/1.1639131 [37] Vergés, M.A., Mifsud, A., Serna, C.J., 1990. Formation of rod-like zinc oxide microcrystals in homogeneous solutions. Journal of the Chemical Society, Faraday Transactions. 86(6), 959-963. DOI: http://dx.doi.org/10.1039/FT9908600959 [38] Sigoli, F.A., Davolos, M.R., Jafelicci Jr, M., 1997. Morphological evolution of zinc oxide originating from zinc hydroxide carbonate. Journal of Alloys and Compounds. 262, 292-295. DOI: https://doi.org/10.1016/S0925-8388(97)00404-0 [39] Cuscó, R., Alarcón-Lladó, E., Ibanez, J., et al., 2007. Temperature dependence of Raman scattering in ZnO. Physical Review B. 75(16), 165202. DOI: https://doi.org/10.1103/PhysRevB.75.165202 [40] Damen, T.C., Porto, S.P.S., Tell, B., 1966. Raman effect in zinc oxide. Physical Review. 142(2), 570. DOI: https://doi.org/10.1103/PhysRev.142.570 [41] Šćepanović, M.G.B.M., Grujić-Brojčin, M., Vojisavljević, K., et al., 2010. Raman study of structural disorder in ZnO nanopowders. Journal of Raman Spectroscopy. 41(9), 914-921. DOI: https://doi.org/10.1002/jrs.2546 [42] Rosset, A., Djessas, K., Goetz, V., et al., 2020. Sol-gel synthesis and solar photocatalytic activity of Ca-alloyed ZnO nanoparticles elaborated using different precursors. RSC Advances. 10(43), 25456-25466. DOI: http://dx.doi.org/10.1039/C9RA10131D [43] Xing, Y.J., Xi, Z.H., Xue, Z.Q., et al., 2003. Optical properties of the ZnO nanotubes synthesized via vapor phase growth. Applied Physics Letters. 83(9), 1689-1691. DOI: https://doi.org/10.1063/1.1605808 [44] Calleja, J.M., Cardona, M., 1977. Resonant raman scattering in ZnO. Physical Review B. 16(8), 3753. DOI: https://link.aps.org/doi/10.1103/PhysRevB.16.3753 [45] Bundesmann, C., Ashkenov, N., Schubert, M., et al., 2003. Raman scattering in ZnO thin films doped with Fe, Sb, Al, Ga, and Li. Applied Physics Letters. 83(10), 1974-1976. DOI: https://doi.org/10.1063/1.1609251 [46] Vasei, H.V., Masoudpanah, S.M., Habibollahzadeh, M., 2020. Different morphologies of ZnO via solution combustion synthesis: The role of fuel. Materials Research Bulletin. 125, 110784. DOI: https://doi.org/10.1016/j.materresbull. 2020.110784 [47] Agarwal, S., Jangir, L.K., Rathore, K.S., et al., 2019. Morphology-dependent structural and optical properties of ZnO nanostructures. Applied Physics A. 125, 1-7. DOI: https://doi.org/10.1007/s00339-019-2852-x [48] Ahmad, I., Ahmed, E., Ahmad, M., et al., 2020. The investigation of hydrogen evolution using Ca doped ZnO catalysts under visible light illumination. Materials Science in Semiconductor Processing. 105, 104748. DOI: https://doi.org/10.1016/j.mssp.2019.104748 [49] Pascariu, P., Tudose, I.V., Suchea, M., et al., 2018. Preparation and characterization of Ni, Co doped ZnO nanoparticles for photocatalytic applications. Applied Surface Science. 448, 481-488. DOI: https://doi.org/10.1016/j.apsusc.2018.04.124 [50] Kumar, A.S., Huang, N.M., Nagaraja, H.S., 2014. Influence of Sn doping on photoluminescence and photoelectrochemical properties of ZnO nanorod arrays. Electronic Materials Let-ters. 10, 753-758. DOI: https://doi.org/10.1007/s13391-014-3348-7 [51] Mishra, S.K., Srivastava, R.K., Prakash, S.G., et al., 2010. Photoluminescence and photoconductive characteristics of hydrothermally synthesized ZnO nanoparticles. Opto-Electronics Review. 18(4), 467-473. DOI: https://doi.org/10.2478/s11772-010-0037-4 [52] Wu, C., Shen, L., Zhang, Y.C., et al., 2011. Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Materials Letters. 65(12), 1794-1796. DOI: https://doi.org/10.1016/j.matlet.2011.03.070 [53] Umar, A., Ribeiro, C., Al-Hajry, A., et al., 2009. Growth of highly c-axis-oriented ZnO nanorods on ZnO/glass substrate: Growth mechanism, structural, and optical properties. The Journal of Physical Chemistry C. 113(33), 14715-14720. DOI: https://doi.org/10.1021/jp9045098 [54] Umar, A., Hahn, Y.B., 2006. ZnO nanosheet networks and hexagonal nanodiscs grown on silicon substrate: Growth mechanism and structural and optical properties. Nanotechnology. 17(9), 2174. DOI: https://dx.doi.org/10.1088/0957-4484/17/9/016 [55] Dai, Y., Zhang, Y., Bai, Y.Q., et al., 2003. Bicrystalline zinc oxide nanowires. Chemical Physics Letters. 375(1-2), 96-101. DOI: https://doi.org/10.1016/S0009-2614(03)00823-6 [56] Saadi, H., Rhouma, F.I.H., Benzarti, Z., et al., 2020. Electrical conductivity improvement of Fe doped ZnO nanopowders. Materials Research Bulletin. 129, 110884. DOI: https://doi.org/10.1016/j.materresbull. 2020.110884 [57] Zhao, H., Wang, H., Meng, X., et al., 2021. A method to reduce ZnO grain resistance and improve the intergranular layer resistance by Ca2+ and Al3+ co-doping. Materials Science in Semiconductor Processing. 128, 105768. DOI: https://doi.org/10.1016/j.mssp.2021.105768