Low Intensity Microwave Fields and Radiation and Their Interaction with the Human Body
Source: By:Author(s)
DOI: https://doi.org/10.30564/jhp.v3i2.4160
Abstract:Sources of low-intensity microwave signals formation, which affect the metabolism processes when they interact with human body, are considered in the article. It’s noticed that increasing intensity level of the technogenic signals in environment significantly exceeds natural electromagnetic fields and radiation (EMR). The peculiarities of the registration and measurement of low-intensity signals parameters of the microwave range are considered. The processes of the interaction of the microwave signals and human organism are analyzed. Formation mechanisms of the positive and negative microwave flows of the electromagnetic radiation are revealed. Particularly, possible formation mechanism of the microwave EMR fluxes of implants in the human body. The results of the experimental study of the EMR signals levels of the objects contacting with human body, partly materials for bone defects replacement and soft tissues regeneration so as materials for physiotherapy, are given. The use of the term “electromagnetic compatibility” for materials which contacting the human body, is proposed. The expediency of its use is proven. Microwave properties of materials for clothes, minerals and building materials, which can affect the human body and environment, have been also studied.
References:[1] Markevich, P.S., Alekhnovich, A.V., Kislenko, A.M., Yesipov, A.A., 2019. Primeneniye ul'trafioletovogo izlucheniya v sovremennoy meditsine (Obzor literatury)/ Vestnik Rossiyskoy voyenno-meditsinskoy akademii. Tom 21,№3, 30-36. DOI:https://doi.org/10.17816/brmma20669 [2] Rastogi, R.P., Kumar, A., Tyagi, M.B., Sinha, R.P., 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids. [PMC free article] [PubMed] [Google Scholar]. DOI:https://doi.org/0.4061/2010/592980 [3] Moskvin, S.V., Osnovy lazernoy terapii, S.V., Moskvin, A.A., Achilov, M., 2008. Meditsina. 255. [4] Rojas, J.C., 2011. Low-level light therapy of the eye and brain / J. C. Rojas, F. Gonzalez-Lima // Eye and Brain. 3, 49-67. [5] Nasel'skiy, P.D., Novikov, D.I., Novikov, I.D., 2003. Reliktovoye izlucheniye Vselennoy. Nauka. 390. [6] Bandara, P., Carpenter, D.O., 2018. Planetary Electromagnetic Pollution: it is Time to assess its Impact. The Lancet Planetary Health. 2, e512-e514. DOI:https://doi.org/10.1016/S2542-5196(18)30221-3 [7] Gajšek, P., Ravazzani, P., Wiart, J., Grellier, J., Samaras, T., Thuróczy, G., 2015. Electromagnetic Field Exposure Assessment in Europe Radiofrequency fields (10MHz-6GHz). Journal of Exposure Science & Environmental Epidemiology. 25, 37-44. DOI:https://doi.org/10.1038/jes.2013.40 [8] Sitko, S.P., 1999. Apparaturnoe obespechenie sovremennukh tekhnologiy kvanovyu medytsyny / S.P. Sitko, Skrypnyk Y.A., Yanenko A.F; pod obsch. red. S.P. Sitko- K. FADA LTD. 199. [9] Yanenko, O., 15.11.2019. Low-intensive microwave ave signals in biology and medicine. Journal of Human Physiology. 1(1), 29-41. [10] Rassel, K.L., 2018. 5G Rasshireniye besprovodnoy svyazi: posledstviya dlya zdorov'ya naseleniya i okruzhayushchey sredy. Ekologicheskiye issledovaniya. 165, 484-495. DOI:https: //doi.org/10.1016/j.envres.2018.01.016 [11] YU, A. Skripnik, A.F., Yanenko, V.F., 2003. Manoylov i dr./ Mikrovolnovaya radiometriya fizicheskikh i biologicheskikh ob"yektov. Zhitomir. 408. [12] Bhatt, C.R., Redmayne, M., Abramson, M.J., Benke, G., 2016. Instruments to Assess and Measure Personal and Environmental Radiofrequency-Electromagnetic Field Exposures. Australasian Physical & Engineering Sciences in Medicine. 39, 29-42. DOI:https://doi.org/10.1007/s13246-015-0412-z [13] Vanbergen, A.J., Potts, S.G., Vian, A., Malkemper, E.P., Young, J., Tscheulin, T., 2019. Risk to Pollinators from Anthropogenic Electro-Magnetic Radiation (EMR): Evidence and Knowledge Gaps. The Science of the Total Environment. 695, 133833. DOI:https://doi.org/10.1016/j.scitotenv.2019. 133833 [14] Hallmann, C.A., Sorg, M., Jongejans, E., Siepel, H., Hofland, N., Schwan, H., Stenmans, W., Muller, A., Sumser, H., Horren, T., Goulson, D., de Kroon, H.,2017. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PloS one. 12, e0185809. DOI:https://doi.org/10.1371/journal.pone.0185809 [15] Sitko, S.P., 1994. Vvedenie v kvanovyu medytsyny/ S.P. Sitko , L.N/ Mkrtcnyan - K. : Pattern. 148. [16] Devyatkov, N.D., Golant, M.B., Betskiy, O.V., 1991. Millimetrovyye volny i ikh rol' v protsessakh zhiznedeyatel'nosti, Radio i svyaz', Moskva. 168. [17] Yanenko, O.P., 2014. Apparatura ta tekhnolohiyi nyzʹkointensyvnoyi milimetrovoyi terapiyi / O.P. Yanenko, S.M.Perehudov, I.V.Fyedotova, O.D.Holovchansʹka // Visnyk NTUU «KPI». Seriya - Radiotekhnika. Radioaparatobuduvannya. 59, 103-110. [18] Sitko, S.P., 1999. Apparaturnoe obespechenie sovremennukh tekhnologiy kvanovyu medytsyny / S.P. Sitko, Skrypnyk Y.A., Yanenko A.F; pod obsch. red. S.P. Sitko- K. FADA LTD. 199. [19] Ponezha, G.V., Sitko, S.P., Skripnik, Yu.A., Yanenko, A.F., 1998. Regula and Reverse Fluxes of Microwave Radiation from Physical and Biologica lObjects, Physics of the Alive. Vol.6, No. 1, 11-14. [20] Bundyuk, L.S., Kuzʹmenko, O.P., Sitʹko, S.P., Skrypnyk, YU.O., Yanenko, O.P., 2003. Sposib mikrokhvylʹovoyi terapiyi. Ukrayinsʹkyy patent. №59399. [21] Khench, L., 2007. Biomaterialy, iskustvennyye organy i inzhenering tkaney/ L. Khench, D. Dzhons; per. s angl. Tekhnosfera. 304. [22] Yanenko, O.P., Perehudov, S.M., Holovchansʹka, O.D., 11.08.2008. Sposib vymiryuvannya potuzhnosti elektromahnitnykh syhnaliv ta identyfikatsiyi stomatolohichnykh materialiv/ Patent Ukrayiny na korysnu model. №344199. Byul. № 15. [23] Chekman, I.S., Malanchuk, V.O., Rybachuk, A.V., 2011. Osnovy nanomedytsyny-K.: Lohos. 250. [24] Oleksiy, Y., Kostiantyn, S., Vladyslav, M., Оleksandra, G., 2019. Microwave Evaluation of Electromagnetic Compatibility of Dielectric Remedial and Therapeutic Materialswith Human Body. International Journal of Materials Besearch. 7(1), 37-43. [25] Ponomarenko, G.N., 2009. Fizioterapija: Nacional'noe rukovodstvo, GEOTAR Media, Moskva. 864. [26] Ulashchik, V.S., 2008. Fizioterapiya. Universal'naya meditsinskaya entsiklopediya Minsk.: Knizhnyy Dom. 640. [27] Oxford American Handbook of Physical Medicine and Rehabilitation, 2010. Edited by Lyn D. Weiss, Jay M. Weiss, Thomas Pobre. - Oxford University Press. 450. [28] Yanenko, О.P., Peregudov, S.М., Shevchenko, К.L.,Golovchanska, О.D., 2021. Features of low-intensity energy balance in the process of physiotherapeutic application of mixtures of natural materials// Вісник КПІ Радіотехніка. Радіоапаратобудування. Вип. 85, 41-47. [29] Skrypnyk, YU.O., Suprun, N.P., Yanenko, O.P., Vahanov, O.A., Peretudov, S.M., 2008. Radiometrychnyy metod otsinky komfortnosti tekstylʹnykh materialiv dlya odyahu //Visnyk KNUTD. 5, 9-14. [30] Skrypnyk YU., O., Yanenko, O.P., Shevchenko, K.L., 2005. ta inshi. Mikrokhvylʹova otsinka radioprozorosti ta hihiyenichnykh vlastyvostey materialiv dlya odyahu. Ukrayinsʹkyy zhurnal medychnoyi tekhniky i tekhnolohiy. 1-2, 12-15. [31] Kutsenko, V.P., 2012. Radiometrychnyy NVCH-kontrolʹ vlastyvostey materialiv / V. P. Kutsenko, YU. O. Skrypnyk, M. F. Trehubov, K. L. Shevchenko, O. P. Yanenko — Donetsʹk: IPSHI Nauka i osvita. 348. [32] Samsonova, G.V., 1965. Fiziko-khimicheskiye svoystva elementov. Spravochnik pod red.- K.: Naukova dumka. 809. [33] Zotz, G., 2016. Plants on plants: the biology of vascular epiphytes, 1st ed.; Springer International Publishing: Switzerland. pp. 1-282.