Heuristic Order Reduction of NARX-OBF models Applied to Nonlinear System Identification
Source: By:Elder Oroski, Beatriz do Santos Pês, Adolfo Bauchspiess, Marco Egito Coelho
DOI: https://doi.org/10.30564/ssid.v1i2.1341
Abstract:[1] L. Ljung. System Identification - Theory for the user, Prentice Hall - PTR, 1999. [2] K. J. Aström, T. Hägglund. Advanced PID Control, ISA, 2011. [3] S. A. Billings. Nonlinear System Identification: NAR-MAX Methods in the Time, Frequency and Spatio-Temporal Domains, John Wiley & Sons, 1st. ed., 2013. [4] R. Isermann, M. Munchhof. Identification of Dynamic Systems: An Introduction with Applications. Springer-Verlag Berlin Heidelberg, 2011. [5] S. Silva. Nonlinear Mechanical System Identification using Discrete-Time Volterra Models and Kautz Filter, 9th. Brazilian Conference on Dynamics, Control and their Ap-plications, 2010. [6] A. Rahrooh, S. Shepard. Identification of Nonlinear Systems using NARMAX Models, Elsevier - Nonlinear Analisis, n. 71, pp. 1198-1202, 2009. [7] O. Akanyeti, I. Rañó, U. Nehmzow, S. A. Billings. An application of Lyapunov stability analysis to improve the performance of NARMAX models, Robotics and Autonomous Systems, 2009, 58: 229-238. [8] P. S. C. Heuberger, P. M. J. Van der Hof, B. Wahlberg. Modelling and Identification with Rational Orthogonal Basis Functions. Springer Press, 1st. Edition, 2005. [9] D. T. Lemma, M. Ramasamy, M. Shuhaimi. Closedloop Identification of Systems with uncertain Time De-lays using ARX-OBF structure, Journal of Process Control, 2011, 21(8): 1148-1154. [10] A. da Rosa, R. J. G. Campello, W. C. Amaral. Exact Search Directions for Optimizations of Linear and Non-linear Models based on Generalized Orthonormal Functions, IEEE Trans. on Automatic Control, 2009, 54(12): 2757-2772. [11] E. Oroski, A. Bauchspiess, R. H. Lopes. Identification of a Magnetic Levitator using NARX-OBF Models and Genetic Algorithm, International Journal of Modeling, Identification and Control, 2017, 28(4): 307-317. [12] H. Akaike. A new Look at the Statistical Model Identification, IEEE Trans. on Automatic Control, 1974, 19(6): 716-723. [13] C. M. Fonseca, E. M. Mendes, P. J. Fleming, S. A. Billings. Nonlinear Model Term selection with Genetic Algorithms, IEEE Workshop on Natural Algorithms in Signal Processing, 1974,2(27): 1-8. [14] J. Nocedal, S. Wright. Numerical Optimization, Springer, 1999. [15] S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge Press, 2009. [16] J. Mockus, W. Eddy, G. Reklaitis. Bayesian Heuristic Approach to Discrete and Global Optimization: Algorithms, Visualization, Software and Applications, Kluwer Academic Publishers, 1st ed., 1997. [17] J. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, 6th ed, 1998. [18] C. Solnon. Ant Colony Optimization and Constraint Programing, Wiley Press, 1st ed., 2010. [19] A. E. Olssom. Particle Swarm: Theory, Techniques and Applications, New Science Publishers, 1st ed., 2011. [20] A. D. Coley. An Introduction to Genetic Algorithms for Scientists and Engineers, Would Scientific, 1999. [21] D. W. Marquardt. An Algorithm for Least Squares Estimation of Nonlinear Parameters, Journal of Society for Industrial and Applied Mathematics, 1963, 11(2): 431-441. [22] M. A. E. Coelho. Permanent Magnet based Magnetic Levitation Kit, International Journal of Applied Electromagnetics and Mechanics, 2015, 47: 963-973. [23] L. Tonks. Note on Earnshaw’s Theorem, Electrical Engineering, 1940, 59(3): 118-119.