A Novel Process for SiGe Core-Shell JAM Transistors Fabrication and Thermal Annealing Effect on Its Electrical Performance
Source: By:Wen-Hsi Lee
DOI: https://doi.org/10.30564/ssid.v1i2.1399
Abstract:[1] Xiang, J., et al.. Ge/Si nanowire heterostructures as high-performance field-effect transistors. nature, 2006, 441(7092): 489. [2] Jiang, Y., et al.. Omega-gate p-MOSFET with nanowirelike SiGe/Si core/shell channel. IEEE Electron Device Letters, 2009, 30(4): 392-394. [3] Hashemi, P., et al.. Width-dependent hole mobility in top-down fabricated Si-core/Ge-shell nanowire metal-oxide-semiconductor-field-effect-transistors. Applied Physics Letters, 2010, 96(6): 063109. [4] Woo Lee, J., et al.. Short channel mobility analysis of SiGe nanowire p-type field effect transistors: Origins of the strain induced performance improvement. Applied Physics Letters, 2012, 101(14): 143502. [5] Schmidt, V., et al.. Silicon nanowires: a review on aspects of their growth and their electrical properties. Advanced Materials, 2009, 21(25-26): 2681-2702. [6] David, T., et al.. Tailoring Strain and Morphology of Core–Shell SiGe Nanowires by Low-Temperature Ge Condensation. Nano letters, 2017, 17(12): 7299-7305. [7] Pham, D., L. Larson, J.-W. Yang. FinFET device junction formation challenges. in 2006 International Workshop on Junction Technology. IEEE, 2006. [8] Lee, C.-W., et al.. Junctionless multigate field-effect transistor. Applied Physics Letters, 2009, 94(5): 053511. [9] Lee, C.-W., et al.. Performance estimation of junctionless multigate transistors. Solid-State Electronics, 2010, 54(2): 97-103. [10] Colinge, J.-P., et al.. Nanowire transistors without junctions. Nature nanotechnology, 2010, 5(3): 225. [11] Kim, T.K., et al.. First demonstration of junctionless accumulation-mode bulk FinFETs with robust junction isolation. IEEE Electron Device Letters, 2013, 34(12): 1479-1481. [12] Kranti, A., et al. Junctionless nanowire transistor (JNT): Properties and design guidelines. in 2010 Proceedings of the European Solid State Device Research Conference. IEEE, 2010. [13] Han, M.-H., et al.. Device and circuit performance estimation of junctionless bulk FinFETs. IEEE Transactions on Electron Devices, 2013, 60(6): 1807-1813. [14] Park, C.-H., et al.. Electrical characteristics of 20-nm junctionless Si nanowire transistors. Solid-State Electronics, 2012, 73: 7-10. [15] Leung, G. C.O. Chui, Variability impact of random dopant fluctuation on nanoscale junctionless FinFETs. IEEE Electron Device Letters, 2012, 33(6): 767-769. [16] Rios, R., et al.. Comparison of junctionless and conventional trigate transistors with $ L_ {g} $ down to 26 nm. IEEE electron device letters, 2011, 32(9): 1170-1172. [17] Jeon, D.-Y., et al.. Low-temperature electrical characterization of junctionless transistors. Solid-State Electronics, 2013, 80: 135-141. [18] Hashemi, P., et al.. High-mobility high-Ge-content Si 1− x Ge x-OI PMOS FinFETs with fins formed using 3D germanium condensation with Ge fraction up to x~ 0.7, scaled EOT~ 8.5 Å and ~ 10nm fin width. in 2015 Symposium on VLSI Circuits (VLSI Circuits), IEEE, 2015. [19] Adhikari, H., et al.. High mobility SiGe shell-Si core omega gate pFETS. in 2009 International Symposium on VLSI Technology, Systems, and Applications. IEEE, 2009. [20] Sioncke, S., et al.. Etch rates of Ge, GaAs and InGaAs in acids, bases and peroxide based mixtures. ECS Transactions, 2008, 16(10): 451-460. [21] Huygens, I.M., W.. Gomes, and K. Strubbe, Etching of germanium in hydrogenperoxide solutions. ECS Transactions, 2007, 6(2): 375-386