On the Impact of Bell Sound on Ambient Particulates
Source: By:Authors
DOI: https://doi.org/10.30564/jasr.v5i4.5121
Abstract:Here the authors examine whether bell sounds can have an impact on ambient aerosol levels and size distribution under atmospheric conditions. The authors present calculation results for acoustic the coagulation by church bell sounds for a range of ambient aerosol types. The results show that for orthokinetic sonic agglomeration, while the frequency spectrum of church bells is ideal for causing coagulation of ambient aerosols, the sound pressure level (SPL) becomes too low for an effect. However, in very polluted conditions, at extremely short distances from the bell dust aerosols can readily undergo sonic coagulation.
References:[1] Oddie, B.C.V., 1965. The hail cannon, an early attempt at weather control. Weather. 20, 154-156. [2] Changnon, S.A. Jr., Ivens, J.L., 1981. History Repeated: The Forgotten Hail Cannons of Europe. Bulletin of the American Meteorological Society. 62(3), 368-375. [3] Wieringa, J., Holleman, I., 2006. If cannons cannot fight hail, what else? Meteorologische Zeitschrift. 15(6), 659-669. DOI: https://doi.org/10.1127/0941-2948/2006/0147 [4] Scott, D.S., 1975. A new approach to the acoustic conditioning of industrial aerosol emissions. Journal of Sound and Vibration. 43(4), 607-619. [5] Hoffmann, T.L., Koopmann, G.H., 1996. Visualization of acoustic particle interaction and agglomeration: Theory and experiments. The Journal of the Acoustical Society of America. 99, 2130. DOI: https://doi.org/10.1121/1.415400 [6] Gallego-Juárez, J.A., De Sarabia, E., RodrÍguez-Corral, G., et al., 1999. Application of Acoustic Agglomeration to Reduce Fine Particle Emissions from Coal Combustion Plants. Environmental Science & Technology. 33(21), 3843-3849. DOI: https://doi.org/10.1021/es990002n [7] Ng, B.F., Xiong, J.W., Wan, M.P., 2017. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems. Plos one. 12(6), e0178851. DOI: https://doi.org/10.1371/journal.pone.0178851 [8] Riera, E., González, I., Rodríguez-Corral, G., et al., 2015. Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications. Gallego-Juárez, J.A., Graff, K.F. (Eds.), Power Ultrasonics; Woodhead Publishing. pp. 1023. DOI: https://doi.org/10.1016/B978-1-78242-028-6.00034-X [9] de Sarabia, E., Gallego-Juárez, J.A., Rodríguez-Corral, G., et al., 2000. Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics. 38, 642-646. DOI: https://doi.org/10.1016/S0041-624X(99)00129-8 [10] González, I., Gallego-Juárez, J.A., Riera, E., 2003. The influence of entrainment on acoustically induced interactions between aerosol particles—an experimental study. Journal of Aerosol Science. 34, 1611- 1631. DOI: https://doi.org/10.1016/S0021-8502(03)00190-3 [11] Kim, S.H., Lee, C.W., Lee, J.M., 2005. Beat characteristics and beat maps of the King Seong-deok Divine Bell. Journal of Sound and Vibration. 281, 21-44. [12] Samolov, A., 2010. Analysis of just Noticeable Difference in Spectrum of Church Bell Sound. Telfor Journal. 2(2), 82-85. [13] Zhang, D., Kong, K., Zhang, M., et al., 2020. Courtyard Sound Field Characteristics by Bell Sounds in Han Chinese Buddhist Temples. Applied Sciences. 10, 1279. DOI: https://doi.org/10.3390/app10041279 [14] Perrin, R., Charnley, T., Banu H., et al., 1985. Chladni’s law and the Modern English Church Bell. Journal of Sound and Vibration. 102, 11-19. [15] Swallowe, G.M., Charnley T., Perrin, R., 1993. New Musical Scales. The Journal of the Acoustical Society of America. 94, 1166-1167. [16] Rayleigh, J.W.S., 1879. On the capillary phenomena of jets. Proceedings of the Royal Society of London. 29, 71-97. [17] Brandt, O., Freund, H., Hiedemann, E., 1937. Suspended matter in a sound field. Zeitschrift fuer Physik. 104, 511-533. [18] Temkin, S., Leung, C.M., 1976. On the velocity of a rigid sphere in a sound wave. Journal of Sound and Vibration. 49(1), 75-92. [19] Hoffmann, T.L., Koopmann, G.H., 1997. Visualization of acoustic particle interaction and agglomeration: Theory evaluation. The Journal of the Acoustical Society of America. 101, 3421. DOI: https://doi.org/10.1121/1.418352 [20] González, I., Hofmann, T.L., Gallego-Juarez, J., 2000. Precise measurements of particle entrainment in a standing-wave acoustic field between 20 and 3500 Hz. Journal of Aerosol Science. 31, 1461-1468. [21] Noorpoor, A.R., Sadighzadeh, A., Habibnejad, H., 2012. Experimental Study on Diesel Exhaust Particles Agglomeration Using Acoustic Waves. International Journal of Automotive Engineering. 2(4), 252-260. [22] Loeffler, F., 1988. Staubabscheiden; George Thieme Verlag: Stuttgart-New York. DOI: https://doi.org/10.1002/star.19890410313 [23] Andrikopoulou, A., 2013. A study of the influence of sound level pressure variations on the levels and size disributions of atmospheriuc aerosols. M.Sc. Thesis, Department of Environmental Engineering, Demokritus University of Thrace. [24] Flocas, H., Asimakopoulos, V.D., Helmis, C.G., 2006. An experimental study of aerosol distribution over a Mediterranean area. Science of the Total Environment. 367, 872-887. [25] Few, A.A., Dessler, A.J., Latham, D.J., et al., 1967. A Dominant 200-Hertz Peak in the Acoustic Spectrum of Thunder. Journal of Geophysical Research. 72(24), 6149-6154. [26] Bodhika, J.A.P., Fernando, M., Cooray, V., 2014. A preliminary study on characteristics of thunder, pulses of lightning. 2014 International Conference on Lightning Protection (ICLP), Shanghai, China. pp. 260-264. [27] Wierzba, A., 1990. Deformation and breakup of liquid drops in a gas stream at nearly critical Weber numbers. Experiments in Fluids. 9, 59-64. DOI: https://doi.org/10.1007/BF00575336 [28] Guildenbecher, D.R., López-Rivera, C., Sojka, P.E., 2011. Droplet Deformation and Breakup. Ashgriz N. (eds) Handbook of Atomization and Sprays. Springer, Boston, MA. DOI: https://doi.org/10.1007/978-1-4419-7264-4_6