Evaluation of the mechanisms acting on the Atlantic Meridional Overturning Circulation in CESM2 for the 1pctCO2 experiment
Source: By:Lívia Sancho, Elisa Passos, Marcio Cataldi, Luiz Paulo de Freitas Assad, Luiz Landau
DOI: https://doi.org/10.30564/jasr.v7i1.6070
Abstract:The Atlantic Meridional Overturning Circulation (AMOC) is a crucial component of the Earth's climate system due to its fundamental role in heat distribution, carbon and oxygen transport, and the weather. Other climate components, such as the atmosphere and sea ice, influence the AMOC. Evaluating the physical mechanisms of those interactions is paramount to increasing knowledge about AMOC's functioning. In this study, the authors used outputs from the Community Earth System Model version 2 and observational data to investigate changes in the AMOC and the associated physical processes. Two DECK experiments were evaluated: piControl and 1pctCO2 , with an annual increase of 1% of atmospheric CO2 . The analysis revealed a significant decrease in the AMOC, associated with changes in mixed layer depth and buoyancy in high latitudes of the North Atlantic, resulting in the shutdown of deep convection and potentially affecting the formation of North Atlantic Deep Water and Antarctic Bottom Water. A vital aspect observed in this study is the association between increased runoff and reduced water evaporation, giving rise to a positive feedback process. Consequently, the rates of freshwater spreading have intensified during this period, which could lead to an accelerated disruption of the AMOC beyond the projections of existing models.
References:[1] Global Warming of 1.5 °C [Internet]. IPCC. Available from: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf [2] Costello, A., Abbas, M., Allen, A., et al., 2009. Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet. 373(9676), 1693–1733. DOI: https://doi.org/10.1016/S0140-6736(09)60935-1 [3] IPCC, 2013. Summary for policymakers. Cambridge University Press: Cambridge. DOI: https://doi.org/10.1017/CBO9781107415324.004 [4] Sundquist, E.T., 2013. Geological perspectives on carbon dioxide and the carbon cycle. American Geophysical Union (AGU): Washington, D.C. pp. 5–60. DOI: https://doi.org/10.1029/GM032p0005 [5] Broecker, W.S., 1987. Unpleasant surprises in the greenhouse? Nature. 328, 123–126. DOI: https://doi.org/10.1038/328123a0 [6] Broecker, W.S., 1997. Thermohaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science. 278(5343), 1582–1588. DOI: https://doi.org/10.1126/science.278.5343.1582 [7] Jackson, L.C., Biastoch, A., Buckley, M.W., et al., 2022. The evolution of the North Atlantic meridional overturning circulation since 1980. Nature Reviews Earth & Environment. 3, 241–254. DOI: https://doi.org/10.1038/s43017-022-00263-2 [8] Johnson, H.L., Cessi, P., Marshall, D.P., et al., 2019. Recent contributions of theory to our understanding of the Atlantic meridional overturning circulation. Journal of Geophysical Research: Oceans. 124(8), 5376–5399. DOI: https://doi.org/10.1029/2019JC015330 [9] Frajka-Williams, E., Foukal, N., Danabasoglu, G., 2023. Should AMOC observations continue: How and why?. Philosophical Transactions of the Royal Society A. 381(2262). DOI: https://doi.org/10.1098/rsta.2022.0195 [10] Anthoff, D., Estrada, F., Tol, R.S., 2016. Shutting down the thermohaline circulation. American Economic Review. 106(5), 602–606. DOI: https://doi.org/10.1257/aer.p20161102 [11] Danabasoglu, G., Yeager, S.G., Kim, W.M., et al., 2016. North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part II: Inter-annual to decadal variability. Ocean Modelling. 97, 65–90. DOI: https://doi.org/https://doi.org/10.1016/j.ocemod.2015.11.007 [12] Stocker, T.F., Wright, D.G., 1991. Rapid transitions of the ocean’s deep circulation induced by changes in surface water fluxes. Nature. 351, 729–732. DOI: https://doi.org/10.1038/351729a0 [13] Lenton, T.M., Held, H., Kriegler, E., et al., 2008. Tipping elements in the Earth’s climate system. Proceedings of the national Academy of Sciences. 105(6), 1786–1793. DOI: https://doi.org/10.1073/pnas.0705414105 [14] Orihuela-Pinto, B., England, M.H., Taschetto, A.S., 2022. Interbasin and interhemispheric impacts of a collapsed Atlantic Overturning Circulation. Nature Climate Change. 12, 558–565. DOI: https://doi.org/10.1038/s41558-022-01380-y [15] Luo, Y., Tjiputra, J., Guo, C., et al., 2018. Atlantic deep water circulation during the last interglacial. Scientific Reports. 8, 4401. DOI: https://doi.org/10.1038/s41598-018-22534-z [16] Buckley, M.W., Marshall, J., 2016. Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review. Reviews of Geophysics. 54(1), 5–63. DOI: https://doi.org/10.1002/2015RG000493 [17] Manabe, S., Stouffer, R.J., 1999. The role of thermohaline circulation in climate. Tellus A: Dynamic Meteorology and Oceanography. 51(1), 91–109. [18] Vellinga, M., Wood, R.A., 2002. Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Climatic Change. 54, 251–267. DOI: https://doi.org/10.1023/A:1016168827653 [19] Knutti, R., Masson, D., Gettelman, A., 2013. Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters. 40(6), 1194–1199. DOI: https://doi.org/10.1002/grl.50256 [20] Danabasoglu, G., Lamarque, J.F., Bacmeister, J., et al., 2020. The community earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems. 12(2), e2019MS001916. DOI: https://doi.org/10.1029/2019MS001916 [21] Cam6.3 User’s Guide [Internet]. NCAR: National Center for Atmospheric Research [cited 2023 Dec 23]. Available from: https://doi.org/10.5065/Z953-ZC95 [22] Lawrence, D.M., Fisher, R.A., Koven, C.D., et al., 2019. The Community Land Model version 5: Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems. 11(12), 4245–4287. DOI: https://doi.org/10.1029/2018MS001583 [23] Technical Description of Version 4.0 of the Community Land Model (CLM) [Internet]. NCAR: National Center for Atmospheric Research. Available from: https://opensky.ucar.edu/islandora/object/technotes%3A493/datastream/PDF/view [24] Hurrell, J.W., Holland, M.M., Gent, P.R., et al., 2013. The community earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society. 94(9), 1339–1360. DOI: https://doi.org/10.1175/BAMS-D-12-00121.1 [25] CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 4.1 LA-CC-06-012 [Internet]. Los Alamos National Laboratory. Available from: https://csdms.colorado.edu/w/images/CICE_documentation_and_software_user%27s_manual.pdf [26] Hunke, E.C., Dukowicz, J.K., 2002. The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere—Incorporation of metric terms. Monthly Weather Review. 130(7), 1848–1865. DOI: https://doi.org/10.1175/1520-0493(2002)130<1848:TEVPSI>2.0.CO;2 [27] Bitz, C.M., Lipscomb, W.H., 1999. An energy‐conserving thermodynamic model of sea ice. Journal of Geophysical Research: Oceans. 104(C7), 15669–15677. DOI: https://doi.org/10.1029/1999JC900100 [28] A Delta-Eddington Mutiple Scattering Parameterization for Solar Radiation in the Sea Ice Component of the Community Climate System Model (No. NCAR/TN-472+STR) [Internet]. [cited 2023 Dec 23]. Available from: https://doi.org/10.5065/D6B27S71 [29] Holland, M.M., Bailey, D.A., Briegleb, B.P., et al., 2012. Improved sea ice shortwave radiation physics in CCSM4: The impact of melt ponds and aerosols on Arctic sea ice. Journal of Climate. 25(5), 1413–1430. DOI: https://doi.org/10.1175/JCLI-D-11-00078.1 [30] Thorndike, A.S., Rothrock, D.A., Maykut, G.A., et al., 1975. The thickness distribution of sea ice. Journal of Geophysical Research. 80(33), 4501–4513. DOI: https://doi.org/10.1029/JC080i033p04501 [31] Li, H., Wigmosta, M.S., Wu, H., et al., 2013. A physically based runoff routing model for land surface and earth system models. Journal of Hydrometeorology. 14(3), 808–828. DOI: https://doi.org/10.1175/JHM-D-12-015.1 [32] The Parallel Ocean Program (POP) Reference Manual: Ocean Component of the Community Climate System Model (CCSM) and Community Earth System Model (CESM) [Internet]. Los Alamos National Laboratory. Available from: https://opensky.ucar.edu/islandora/object/manuscripts%3A825/datastream/PDF/view [33] Griffies, S.M., Böning, C., Bryan, F.O., et al., 2000. Developments in ocean climate modelling. Ocean Modelling. 2(3–4), 123–192. DOI: https://doi.org/10.1016/S1463-5003(00)00014-7 [34] Eyring, V., Bony, S., Meehl, G.A., et al., 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development. 9(5), 1937–1958. DOI: https://doi.org/10.5194/gmd-9-1937-2016 [35] Meinshausen, M., Vogel, E., Nauels, A., et al., 2017. Historical greenhouse gas concentrations for climate modelling (CMIP6). Geoscientific Model Development. 10(5), 2057–2116. DOI: https://doi.org/10.5194/gmd-10-2057-2017 [36] Hoesly, R.M., Smith, S.J., Feng, L., et al., 2018. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geoscientific Model Development. 11(1), 369–408. DOI: https://doi.org/10.5194/gmd-11-369-2018 [37] Van Marle, M.J., Kloster, S., Magi, B.I., et al., 2017. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015). Geoscientific Model Development. 10(9), 3329–3357. DOI: https://doi.org/10.5194/gmd-10-3329-2017 [38] Kay, J.E., Deser, C., Phillips, A., et al., 2015. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bulletin of the American Meteorological Society. 96(8), 1333–1349. DOI: https://doi.org/10.1175/BAMS-D-13-00255.1 [39] Steele, M., Morley, R., Ermold, W., 2001. PHC: A global ocean hydrography with a high-quality Arctic Ocean. Journal of Climate. 14(9), 2079–2087. DOI: https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 [40] Bacmeister, J.T., Hannay, C., Medeiros, B., et al., 2020. CO2 increase experiments using the CESM: Relationship to climate sensitivity and comparison of CESM1 to CESM2. ESS Open Archive. DOI: https://doi.org/10.1002/essoar.10502611.1 [41] Atlantic Meridional Overturning Circulation Observed by the RAPID-MOCHA-WBTS (Rapid-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) Array at 26N from 2004 to 2022 (v2022.1) [Internet]. British Oceanographic Data Centre. [cited 2023 Nov 11]. Available from: https://doi.org/10.5285/04c79ece-3186-349a-e063-6c86abc0158c [42] Lozier, M.S., Bacon, S., Bower, A.S., et al., 2017. Overturning in the Subpolar North Atlantic Program: A new international ocean observing system. Bulletin of the American Meteorological Society. 98(4), 737–752. DOI: https://doi.org/10.1175/BAMS-D-16-0057.1 [43] McCarthy, G.D., Smeed, D.A., Johns, W.E., et al., 2015. Measuring the Atlantic meridional overturning circulation at 26°N. Progress in Oceanography. 130, 91–111. DOI: https://doi.org/10.1016/j.pocean.2014.10.006 [44] Frajka-Williams, E., Ansorge, I.J., Baehr, J., et al., 2019. Atlantic meridional overturning circulation: Observed transport and variability. Frontiers in Marine Science. 6, 260. DOI: https://doi.org/10.3389/fmars.2019.00260 [45] Kim, S.K., Kim, H.J., Dijkstra, H.A., et al., 2022. Slow and soft passage through tipping point of the Atlantic Meridional Overturning Circulation in a changing climate. npj Climate and Atmospheric Science. 5, 13. DOI: https://doi.org/10.1038/s41612-022-00236-8 [46] Manabe, S., Stouffer, R.J., 1997. Coupled ocean‐atmosphere model response to freshwater input: Comparison to Younger Dryas event. Paleoceanography and Paleoclimatology. 12(2), 321–336. DOI: https://doi.org/10.1029/96PA03932 [47] Castro, B.M., 2014. Summer/winter stratification variability in the central part of the South Brazil Bight. Continental Shelf Research. 89, 15–23. DOI: https://doi.org/10.1016/j.csr.2013.12.002 [48] Large, W.G., Danabasoglu, G., Doney, S.C., et al., 1997. Sensitivity to surface forcing and boundary layer mixing in a global ocean model: Annual-mean climatology. Journal of Physical Oceanography. 27(11), 2418–2447. DOI: https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2 [49] Kadiyala, A., Kumar, A., 2017. Applications of Python to evaluate environmental data science problems. Environmental Progress & Sustainable Energy. 36(6), 1580–1586. DOI: https://doi.org/10.1002/ep.12786 [50] Loh, W.Y., 2011. Classification and regression trees. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 1(1), 14–23. DOI: https://doi.org/10.1002/widm.8 [51] Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011. Scikit-learn: Machine learning in Python. The Journal of Machine Learning Research. 12, 2825–2830. [52] De’ath, G., Fabricius, K.E., 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology. 81(11), 3178–3192. DOI: https://doi.org/10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 [53] Moat, B.I., Smeed, D.A., Frajka-Williams, E., et al., 2020. Pending recovery in the strength of the meridional overturning circulation at 26°N. Ocean Science. 16(4), 863–874. DOI: https://doi.org/10.5194/os-16-863-2020 [54] Smeed, D.A., Josey, S.A., Beaulieu, C., et al., 2018. The North Atlantic Ocean is in a state of reduced overturning. Geophysical Research Letters. 45(3), 1527–1533. DOI: https://doi.org/10.1002/2017GL076350 [55] Atlantic Meridional Overturning Circulation Observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) Array at 26N from 2004 to 2020 (v2020.1) [Internet]. National Oceanography Centre. Available from: https://doi.org/10.5285/cc1e34b3-3385-662b-e053-6c86abc03444 [56] Jackson, L.C., Hewitt, H.T., Bruciaferri, D., et al., 2023. Challenges simulating the AMOC in climate models. Philosophical Transactions of the Royal Society A. 381(2262), 20220187. DOI: https://doi.org/10.1098/Rsta.2022.0187 [57] Swingedouw, D., Mignot, J., Braconnot, P., et al., 2009. Impact of freshwater release in the North Atlantic under different climate conditions in an OAGCM. Journal of Climate. 22(23), 6377–6403. DOI: https://doi.org/10.1175/2009JCLI3028.1 [58] Boers, N., 2021. Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nature Climate Change. 11(8), 680–688. DOI: https://doi.org/10.1038/s41558-021-01097-4 [59] Stammer, D., Köhl, A., Vlasenko, A., et al., 2018. A pilot climate sensitivity study using the CEN coupled adjoint model (CESAM). Journal of Climate. 31(5), 2031–2056. DOI: https://doi.org/10.1175/JCLI-D-17-0183.1 [60] Sancho, L.M.B., de Freitas Assad, L.P., Landau, L., 2015. Volume and heat transports analysis in the South Atlantic Basin related to climate change scenarios. Brazilian Journal of Geophysics. 33(2), 333–348. DOI: http://dx.doi.org/10.22564/rbgf.v33i2.724 [61] Zhu, Y., Wei, Z., Wang, Y., et al., 2014. The annual mean sketches and climatological variability of the volume and heat transports through the inter-basin passages: A study based on 1400-year spin up of MOM4p1. Acta Oceanologica Sinica. 33, 12–24. DOI: https://doi.org/10.1007/s13131-014-0513-7 [62] Srokosz, M., Baringer, M., Bryden, H., et al., 2012. Past, present, and future changes in the Atlantic meridional overturning circulation. Bulletin of the American Meteorological Society. 93(11), 1663–1676. DOI: https://doi.org/10.1175/BAMS-D-11-00151.1 [63] Lique, C., Johnson, H.L., Plancherel, Y., 2018. Emergence of deep convection in the Arctic Ocean under a warming climate. Climate Dynamics. 50, 3833–3847. DOI: https://doi.org/10.1007/s00382-017-3849-9 [64] Carton, J.A., Grodsky, S.A., Liu, H., 2008. Variability of the oceanic mixed layer, 1960–2004. Journal of Climate. 21(5), 1029–1047. DOI: https://doi.org/10.1175/2007JCLI1798.1 [65] Lohmann, K., Drange, H., Bentsen, M., 2009. Response of the North Atlantic subpolar gyre to persistent North Atlantic oscillation like forcing. Climate Dynamics. 32, 273–285. DOI: https://doi.org/10.1007/s00382-008-0467-6 [66] Mauritzen, C., Häkkinen, S., 1997. Influence of sea ice on the thermohaline circulation in the Arctic‐North Atlantic Ocean. Geophysical Research Letters. 24(24), 3257–3260. DOI: https://doi.org/10.1029/97GL03192 [67] Colling, A., 1989. Ocean circulation. Elsevier: Oxford. [68] Talley, L., Pickard, G., Emery, W., et al., 2011. Descriptive physical oceanography: An introduction. Elsevier: Boston. [69] Grassl, H., 2001. The ocean and climate: Climate and oceans. Ocean circulation and climate: Observing and modelling the global ocean. Academic Press: Cambridge. pp. 3–10. [70] Muntjewerf, L., Sellevold, R., Vizcaino, M., et al., 2020. Accelerated Greenland ice sheet mass loss under high greenhouse gas forcing as simulated by the coupled CESM2. 1‐CISM2. 1. Journal of Advances in Modeling Earth Systems. 12(10), e2019MS002031. DOI: https://doi.org/10.1029/2019MS002031 [71] Forryan, A., Bacon, S., Tsubouchi, T., et al., 2019. Arctic freshwater fluxes: Sources, tracer budgets and inconsistencies. The Cryosphere. 13(8), 2111–2131. DOI: https://doi.org/10.5194/tc-13-2111-2019 [72] McDonagh, E.L., King, B.A., Bryden, H.L., et al., 2015. Continuous estimate of Atlantic oceanic freshwater flux at 26.5°N. Journal of Climate. 28(22), 8888–8906. DOI: https://doi.org/10.1175/JCLI-D-14-00519.1 [73] Rahmstorf, S., 1995. Climate drift in an ocean model coupled to a simple, perfectly matched atmosphere. Climate Dynamics. 11, 447–458. DOI: https://doi.org/10.1007/BF00207194 [74] Bitz, C.M., Holland, M.M., Hunke, E.C., et al., 2005. Maintenance of the sea-ice edge. Journal of Climate. 18(15), 2903–2921. DOI: https://doi.org/10.1175/JCLI3428.1