Multi-decadal Changes of the Impact of El Niño Events on Tibetan Plateau Summer Precipitation
Source: By:Weinan Jiang, Ning Cao, Aze Riga, Jianjun Xu
DOI: https://doi.org/10.30564/jasr.v7i1.6180
Abstract:Precipitation on the Tibetan Plateau (TP) has an important effect on the water supply and demand of the downstream population. Involving recent climate change, the multi-decadal variations of the impact of El Niño-Southern Oscillation (ENSO) events on regional climate were observed. In this work, the authors investigated the changes in summer precipitation over TP during 1950–2019. At the multi-decadal scale, the authors found that the inhabiting impact of El Niño events on the TP summer precipitation has strengthened since the late 1970s. The main factor contributing to this phenomenon is the significant amplification in the decadal amplitude of El Niño during 1978–2019 accompanied by a discernible escalation in the frequency of El Niño events. This phenomenon induces anomalous perturbations in sea surface temperatures (SST) within the tropical Indo-Pacific region, consequently weakening the atmospheric vapor transport from the western Pacific to the TP. Additionally, conspicuous anomalies in subsidence motion are observed longitudinally and latitudinally across the TP which significantly contributes to a curtailed supply of atmospheric moisture. These results bear profound implications for the multi-decadal prediction of the TP climate.
References:[1] Yao, T., Liu, Y., Zhao, H., et al., 2011. Tibetan plateau. Encyclopedia of snow, ice and glaciers. Springer: Dordrecht. pp. 1172–1175. DOI: https://doi.org/10.1007/978-90-481-2642-2_578 [2] Qiu, J., 2008. China: The third pole. Nature. 454, 393–396. DOI: https://doi.org/10.1038/454393a [3] Immerzeel, W.W., Van Beek, L.P.H., Bierkens, M.F.P., 2010. Climate change will affect the Asian Water Towers. Science. 328(5984), 1382–1385. DOI: https://doi.org/10.1126/science.1183188 [4] Yao, T., Bolch, T., Chen, D., et al., 2022. The imbalance of the Asian water tower. Nature Reviews Earth & Environment. 3, 618–632. DOI: https://doi.org/10.1038/s43017-022-00299-4 [5] Chen, F., Zhang, J., Liu, J., et al., 2020. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews. 243, 106444. DOI: https://doi.org/10.1016/j.quascirev.2020.106444 [6] Jiang, X., Li, Y., Yang, S., et al., 2016. Interannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western maritime continent. Journal of Climate. 29(1), 121–138. DOI: https://doi.org/10.1175/JCLI-D-15-0181.1 [7] He, C., Wang, Z., Zhou, T., et al., 2019. Enhanced latent heating over the Tibetan Plateau as a key to the enhanced East Asian summer monsoon circulation under a warming climate. Journal of Climate. 32(11), 3373–3388. DOI: https://doi.org/10.1175/JCLI-D-18-0427.1 [8] Luo, X., Xu, J., Li, K., 2019. A review of atmospheric heat sources over Tibetan Plateau. Guangdong Ocean University. 39, 130–136. (in Chinese). [9] Wang, X., Pang, G., Yang, M., 2018. Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations. International Journal of Climatology. 38(3), 1116–1131. DOI: https://doi.org/10.1002/joc.5246 [10] Joswiak, D.R., Yao, T., Wu, G., et al., 2013. Ice-core evidence of westerly and monsoon moisture contributions in the central Tibetan Plateau. Journal of Glaciology. 59(213), 56–66. DOI: https://doi.org/10.3189/2013JoG12J035 [11] Yao, T., Masson-Delmotte, V., Gao, J., et al., 2013. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: Observations and simulations. Reviews of Geophysics. 51(4), 525–548. DOI: https://doi.org/10.1002/rog.20023 [12] Yao, T., Piao, S., Shen, M., et al., 2017. Chained impacts on modern environment of interaction between Westerlies and Indian monsoon on Tibetan Plateau. Bulletin of Chinese Academy of Sciences. 32(9), 976–984. (in Chinese). DOI: https://doi.org/10.16418/j.issn.1000-3045.2017.09.007 [13] Li, G., Chen, H., Xu, M., et al., 2022. Impacts of topographic complexity on modeling moisture transport and precipitation over the Tibetan plateau in summer. Advances in Atmospheric Sciences. 39, 1151–1166. DOI: https://doi.org/10.1007/s00376-022-1409-7 [14] Dong, N., Xu, X., Cai, W., et al., 2022. Comprehensive effects of interdecadal change of sea surface temperature increase in the Indo-Pacific Ocean on the warming-wetting of the Qinghai-Tibet Plateau. Scientific Reports. 12, 22306. DOI: https://doi.org/10.1038/s41598-022-26465-8 [15] Jiang, X., F. Cai, Z. Li, et al., 2023. The westerly winds control the zonal migration of rainy season over the Tibetan Plateau. Communications Earth & Environment. 4, 363. DOI: https://doi.org/10.1038/s43247-023-01035-6 [16] Klein, S.A., Soden, B.J., Lau, N., 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. Journal of Climate. 12(4), 917–932. DOI: https://doi.org/10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 [17] Xie, S., Kosaka, Y., Du, Y., et al., 2016. Indo-western Pacific Ocean capacitor and coherent climate anomalies in post-ENSO summer: A review. Advances in Atmospheric Sciences. 33, 411–432. DOI: https://doi.org/10.1007/s00376-015-5192-6 [18] He, S., Yu, J., Yang, S., et al., 2020. ENSO’s impacts on the tropical Indian and Atlantic Oceans via tropical atmospheric processes: Observations versus CMIP5 simulations. Climate Dynamics. 54, 4627–4640. DOI: https://doi.org/10.1007/s00382-020-05247-w [19] Wu, R., Zhu, P., 2021. Interdecadal change in the relationship of Indochina Peninsula May precipitation to ENSO. International Journal of Climatology. 41(4), 2441–2455. DOI: https://doi.org/10.1002/joc.6968 [20] Ren, Q., Jiang, X., Shi, R., 2023. The enhanced relationship between summer rainfall over the eastern Tibetan Plateau and sea surface temperature in the tropical Indo-Pacific Ocean. Climate Dynamics. 60, 4017–4031. DOI: https://doi.org/10.1007/s00382-022-06509-5 [21] Xie, S., Hu, K., Hafner, J., et al., 2009. Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. Journal of Climate. 22(3), 730–747. DOI: https://doi.org/10.1175/2008JCLI2544.1 [22] Du, Y., Xie, S.P., Huang, G., et al., 2009. Role of air-sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. Journal of Climate. 22(8), 2023–2038. DOI: https://doi.org/10.1175/2008JCLI2590.1 [23] Chen, X., You, Q., 2017. Effect of Indian Ocean SST on Tibetan Plateau precipitation in the early rainy season. Journal of Climate. 30(22), 8973–8985. DOI: https://doi.org/10.1175/JCLI-D-16-0814.1 [24] Park, J., Kug, J., Yang, Y., et al., 2023. Distinct decadal modulation of Atlantic-Niño influence on ENSO. npj Climate and Atmospheric Science. 6, 105. DOI: https://doi.org/10.1038/s41612-023-00429-9 [25] Si, Y., Jin, F., Yang, W., et al., 2023. Change and teleconnections of climate on the Tibetan Plateau. Stochastic Environmental Research and Risk Assessment. 37, 4013–4027. DOI: https://doi.org/10.1007/s00477-023-02492-3 [26] Nagura, M., Konda, M., 2007. The seasonal development of an SST anomaly in the Indian ocean and its relationship to ENSO. Journal of Climate. 20(1), 38–52. DOI: https://doi.org/10.1175/JCLI3986.1 [27] Lei, Y., Zhu, Y., Wang, B., et al., 2019. Extreme lake level changes on the Tibetan Plateau associated with the2015/2016 El Niño. Geophysical Research Letters. 46(11), 5889–5898. DOI: https://doi.org/10.1029/2019GL081946 [28] Hu, S., Zhou, T., Wu, B., 2021. Impact of developing ENSO on Tibetan plateau summer rainfall. Journal of Climate. 34(9), 3385–3400. DOI: https://doi.org/10.1175/JCLI-D-20-0612.1 [29] Liu, M., Ren, H.L., Wang, R., et al., 2023. Distinct impacts of two types of developing El Niño-Southern oscillations on Tibetan plateau summer precipitation. Remote Sensing. 15(16), 4030. DOI: https://doi.org/10.3390/rs15164030 [30] Ashok, K., Behera, S.K., Rao, S., et al., 2007. El Niño Modoki and its possible teleconnection. Journal of Geophysical Research. 112(C11). DOI: https://doi.org/10.1029/2006JC003798 [31] Yeh, S., Kug, J., Dewitte, B., et al., 2009. El Niño in a changing climate. Nature. 461, 511–514. DOI: https://doi.org/10.1038/nature08316 [32] Lee, T., McPhaden, M.J., 2010. Increasing intensity of El Niño in the central-equatorial Pacific. Geophysical Research Letters. 37(14). DOI: https://doi.org/10.1029/2010GL044007 [33] Liu, Y., Cobb, K., Song, H., et al., 2017. Recent enhancement of central Pacific El Niño variability relative to last eight centuries. Nature Communications. 8, 15386. DOI: https://doi.org/10.1038/ncomms15386 [34] Freund, M.B., Henley, B.J., Karoly, D.J., et al., 2019. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nature Geoscience. 12, 450–455. DOI: https://doi.org/10.1038/s41561-019-0353-3 [35] Li, G., Gao, C., Xu, B., et al., 2021. Strengthening influence of El Niño on the following spring precipitation over the Indochina Peninsula. Journal of Climate. 34(14), 5971–5984. DOI: https://doi.org/10.1175/JCLI-D-20-0940.1 [36] Gao, C., Li, G., Chen, H., et al., 2020. Interdecadal change in the effect of spring soil moisture over the Indo-China Peninsula on the following summer precipitation over the Yangtze River Basin. Journal of Climate. 33(16), 7063–7082. DOI: https://doi.org/10.1175/JCLI-D-19-0754.1 [37] Chen, L., Li, G., 2022. Interdecadal change in the relationship between El Niño in the decaying stage and the central China summer precipitation. Climate Dynamics. 59, 1981–1996. DOI: https://doi.org/10.1007/s00382-022-06192-6 [38] Li, G., Gao, C., Lu, B., et al., 2021. Inter-annual variability of spring precipitation over the Indo-China Peninsula and its asymmetric relationship with El Niño-Southern Oscillation. Climate Dynamics. 56, 2651–2665. DOI: https://doi.org/10.1007/s00382-020-05609-4 [39] Harris, I., Osborn, T.J., Jones, P., et al., 2020. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Scientific Data. 7, 109. DOI: https://doi.org/10.1038/s41597-020-0453-3 [40] Hersbach, H., Bell, B., Berrisford, P., et al., 2023. ERA5 monthly averaged data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). [41] Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 146(730), 1999–2049. DOI: https://doi.org/10.1002/qj.3803 [42] Rayner, N.A., Parker, D.E., Horton, E.B., et al., 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research. 108(D14). DOI: https://doi.org/10.1029/2002JD002670 [43] Gong, Y., Li, T., Chen, L., 2020. Interdecadal modulation of ENSO amplitude by the Atlantic multi-decadal oscillation (AMO). Climate Dynamics. 55, 2689–2702. DOI: https://doi.org/10.1007/s00382-020-05408-x [44] Hong, C., Li, T., Ho, L., et al., 2010. Asymmetry of the Indian Ocean Basinwide SST Anomalies: Roles of ENSO and IOD. Journal of Climate. 23(13), 3563–3576. DOI: https://doi.org/10.1175/2010JCLI3320.1 [45] Xu, X.D., Dong, L.L., Zhao, Y., et al., 2019. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation. Chinese Science Bulletin. 64(27), 2830–2841. (in Chinese). [46] Wu, X., Li, G., Jiang, W., et al., 2021. Asymmetric relationship between ENSO and the tropical Indian Ocean summer SST anomalies. Journal of Climate. 34(14), 5955–5969. DOI: https://doi.org/10.1175/JCLI-D-20-0546.1