An Association of Vitamins A and E with Hyaluronic and Lactobionic Acids may Prevent Molecular Changes Associated with Keratocyte to Myofibroblast Transition
Source: By:Dario Rusciano, Martina Cristaldi, Gabriella Lupo, Melania Olivieri, Giorgia Spampinato, Carmelina D. Anfuso
DOI: https://doi.org/10.30564/jim.v10i2.3382
Abstract: Inflammatory events in the corneal stroma may activate keratocytes and trigger their transition towards myofibroblasts, which now produce different extracellular matrix (ECM) proteins thus causing corneal opacification.Corneal haze is a frequent side effect after photorefractive keratectomy (PRK) to correct high myopia.Currently, a preventive treatment with mitomycin-c can be used to limit the occurrence of this phenomenon. However, mitomycin-c is a toxic drug, not devoid of side effects, which may occasionally involve the corneal endothelium. Therefore, we have searched for a less risky, natural way, to prevent keratocytes transition. To this purpose, we have used as markers of the phenotype switch the proteins lumican (highly expressed by keratocytes and much less by myofibroblasts) and smooth muscle actin (αSMA) (highly expressed by myofibroblasts and poorly found in keratocytes), beside Fibronectin (Fn), the expression of which is also increased by transforming growth factor-beta (TGFβ treatment. Treatment of human keratocytes with TGFβ was used to induce the protein shift. Among different possible candidates, we have found that vitamins A and E, hyaluronic and lactobionic acids may prevent, either alone, or much better in association, the shift in the ratio between lumican and αSMA and the increased Fn expression. In conclusion, it could be speculated that topic treatment of the ocular surface with an association of these four compounds could be able to prevent or at least limit the occurrence of post-PRK corneal haze, with the additional advantage of lubrication, hydration and antioxidant defense exerted by these molecules. References:[1] Navarro R. (2009), "The Optical Design of the Human Eye: a Critical Review", Journal of Optometry 2(1) 3–18. [2] Ambati B. K., Nozaki M., Singh N., Takeda A., Jani P. D., Suthar T., Albuquerque R. J. C., Richter E., Sakurai E., Newcomb M. T., Kleinman M. E., Caldwell R. B., Lin Q., Ogura Y., Orecchia A., Samuelson D. A., Agnew D. W., Leger J. S., Green W. R., Mahasreshti P. J., Curiel D. T., Kwan D., Marsh H., Ikeda S., Leiper L. J., Collinson J.M., Bogdanovich S., Khurana T. S., Shibuya M., Baldwin M. E., Ferrara N., Gerber H-P., De Falco S., Witta J., Baffi J. Z., Raisler B. J. and Ambati J. (2006), "Corneal avascularity is due to soluble VEGF receptor-1", Nature 443 (7114) 993–7. [3] Bonanno J. A. (2012), "Molecular mechanisms underlying the corneal endothelial pump", Exp Eye Res 95 (1) 2–7. [4] Price M. O., Mehta J. S., Jurkunas U. V. and Price F. W. (2021), "Corneal endothelial dysfunction: Evolving understanding and treatment options", Progress in Retinal and Eye Research 82:100904. [5] Meek K. M. and Knupp C. (2015), "Corneal structure and transparency", Prog Retin Eye Res 49:1–16. [6] Chen S., Young M. F., Chakravarti S. and Birk D. E. (2014), "Interclass small leucine-rich repeat proteoglycan interactions regulate collagen fibrillogenesis and corneal stromal assembly", Matrix Biology 35:103–11. [7] Ljubimov A. V. and Saghizadeh M. (2015), "Progress in corneal wound healing", Prog Retin Eye Res 49: 17–45. [8] Carlson E. C., Wang I-J, Liu C-Y, Brannan P., Kao C. W. C. and Kao W. W. Y. (2003), "Altered KSPG expression by keratocytes following corneal injury", Mol Vis 21, (9) 615–23. [9] Jeon K-I, Hindman H. B., Bubel T., McDaniel T., DeMagistris M., Callan C and Huxlin K. R. (2018) "Corneal myofibroblasts inhibit regenerating nerves during wound healing", Sci Rep 8, (1) 12945. [10] Diakonis V. F., Kankariya V. P., Kymionis G. D., Kounis G., Kontadakis G., Gkenos E., Grentzelos M. A., Hajithanasis G., Yoo S. H. and Pallikaris I. G. (2014), "Long term followup of photorefractive keratectomy with adjuvant use of mitomycin", C J Ophthalmol 2014:821920. [11] Netto M. V., Mohan R. R., Sinha S., Sharma A, Gupta P. C. and Wilson S. E. (2006), "Effect of prophylactic and therapeutic mitomycin C on corneal apoptosis, cellular proliferation, haze, and long-term keratocyte density in rabbits", J Refract Surg 22, (6) 562–74. [12] Pfister R. R. (2004), "Permanent corneal edema resulting from the treatment of PTK corneal haze with mitomycin: a case report", Cornea 23, (7) 744–7. [13] Schneider C.A., Rasband W. S. and Eliceiri K. W. (2012), "NIH Image to ImageJ: 25 years of image analysis", Nat Methods 9, (7) 671–5. [14] Beales M. P., Funderburgh J. L., Jester J. V. and Hassell J. R. (1999), "Proteoglycan synthesis by bovine keratocytes and corneal fibroblasts: maintenance of the keratocyte phenotype in culture", Invest Ophthalmol Vis Sci 40, (8) 1658–63. [15] Funderburgh J. L., Funderburgh M. L., Mann M. M., Corpuz L. and Roth M. R. (2001), "Proteoglycan expression during transforming growth factor beta -induced keratocyte-myofibroblast transdifferentiation", J Biol Chem 276, (47) 44173–8. [16] Chen S., Birk D. (2013), "The regulatory roles of small leucine‐rich proteoglycans in extracellular matrix assembly", The FEBS Journal Wiley Online Library 280, (10) 2120-37. [17] Amjadi S., Mai K., McCluskey P. and Wakefield D. (2013), "The role of lumican in ocular disease", ISRN Ophthalmol 2013:632302. [18] Chakravarti S., Magnuson T., Lass J. H., Jepsen K.J., LaMantia C. and Carroll H. (1998), "Lumican Regulates Collagen Fibril Assembly: Skin Fragility and Corneal Opacity in the Absence of Lumican", Journal of Cell Biology 141, (5) 1277–86. [19] Chakravarti S., Petroll W. M., Hassell J. R., Jester J. V., Lass J. H., Paul J. and Birk D. E. (2000), "Corneal opacity in lumican-null mice: defects in collagen fibril structure and packing in the posterior stroma", Invest Ophthalmol Vis Sci 41, (11) 3365–73. [20] Liu C-Y, Birk D. E., Hassell J. R., Kane B. and Kao W. W-Y. (2003), "Keratocan-deficient mice display alterations in corneal structure", J Biol Chem 278, (24) 21672–7. [21] Meek K. M., Quantock A. J., Boote C., Liu C. Y. and Kao W. W-Y. (2003), "An X-ray scattering investigation of corneal structure in keratocan-deficient mice", Matrix Biol 22, (6) 467–75. [22] Pellegata N. S., Dieguez-Lucena J. L., Joensuu T., Lau S, Montgomery K. T., Krahe R., Kivelä T., Kucherlapati R., Forsius H. and de la Chapelle A. (2000), "Mutations in KERA, encoding keratocan, cause cornea plana", Nat Genet 25, (1) 91–5. [23] Carlson E. C., Liu C-Y, Chikama T., Hayashi Y., Kao C W-C., Birk D. E., Funderburgh J. L., Jester J. V and Kao W W-Y. (2005), "Keratocan, a cornea-specific keratan sulfate proteoglycan, is regulated by lumican", J Biol Chem 280, (27) 25541–7. [24] Hamley I. W., Dehsorkhi A., Castelletto V., Walter M. N. M., Connon C. J., Reza M. and Ruokolainen J. (2015), "Self-Assembly and Collagen-Stimulating Activity of a Peptide Amphiphile Incorporating a Peptide Sequence from Lumican", Langmuir 31, (15) 4490–5. [25] Walter M. N. M., Dehsorkhi A., Hamley I. W. and Connon C. J. (2016), "Supra-molecular assembly of a lumican-derived peptide amphiphile enhances its collagen-stimulating activity", Biomater. Sci. 4, (2) 346–54. [26] Darby I., Skalli O. and Gabbiani G. (1990), "Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing", Lab Invest 63, (1) 21–9. [27] Jester J. V., Petroll W. M. and Cavanagh H. D. (1999), "Corneal stromal wound healing in refractive surgery: the role of myofibroblasts", Progress in Retinal and Eye Research 18, (3) 311–56. [28] Jester J. V., Huang J., Barry-Lane P. A., Kao W. W., Petroll W. M. and Cavanagh H. D. (1999), "Transforming growth factor(beta)-mediated corneal myofibroblast differentiation requires actin and Fn assembly", Invest Ophthalmol Vis Sci 40, (9)1959–67. [29] Santibañez J. F., Quintanilla M. and Bernabeu C. (2011), "TGF-β/TGF-β receptor system and its role in physiological and pathological conditions", Clin Sci (Lond) 121, (6) 233–51. [30] Kaji Y., Soya K., Amano S., Oshika T. and Yamashita H. (2001), "Relation between corneal haze and transforming growth factor-beta1 after photorefractive keratectomy and laser in situ keratomileusis", J Cataract Refract Surg 27, (11) 1840–6. [31] Lamouille S., Connolly E., Smyth J. W., Akhurst R. J. and Derynck R. (2012), "TGF-β-induced activation of mTOR complex 2 drives epithelial-mesenchymal transition and cell invasion", J Cell Sci 125, (Pt 5) 1259–73. [32] Milani B.Y., Milani F. Y., Park D., Namavari A., Shah J., Amirjamshidi H., Ying H. and Djalilian A. R. (2013), "Rapamycin Inhibits the Production of Myofibroblasts and Reduces Corneal Scarring After Photorefractive Keratectomy", Invest. Ophthalmol. Vis. Sci. 54, (12) 7424–30. [33] Chang Y-M, Liang C-M, Weng T-H, Chien K-H and Lee C-H. (2020), "Mitomycin C for the prevention of corneal haze in photorefractive keratectomy: a meta-analysis and trial sequential analysis", Acta Ophthalmologica. Online ahead of print. [34] Carlos de Oliveira R. and Wilson S. E. (2020), "Biological effects of mitomycin C on late corneal haze stromal fibrosis following PRK", Exp Eye Res 200:108218. [35] Shin Y. J., Hyon J. Y., Choi W. S., Yi K., Chung E-S, Chung T-Y and Wee W. R. (2013), "Chemical Injury-Induced Corneal Opacity and Neovascularization Reduced by Rapamycin via TGF-β1/ERK Pathways Regulation", Invest. Ophthalmol. Vis. Sci. 54, (7) 4452–8. [36] Cho J-W, Cho S-Y, Lee S-R and Lee K-S. (2010), "Onion extract and quercetin induce matrix metalloproteinase-1 in vitro and in vivo", Int J Mol Med 25, (3) 347–52. [37] Ho W. S., Ying S. Y., Chan P. C. and Chan H. H. (2006), "Use of Onion Extract, Heparin, Allantoin Gel in Prevention of Scarring in Chinese Patients Having Laser Removal of Tattoos: A Prospective Randomized Controlled Trial" Dermatologic Surgery 32, (7) 891–6. [38] Kim S., Park Y. W., Lee E., Park S. W., Park S., Noh H., Kim J W., Seong J. K. and Seo K. (2016), "Effect of onion extract on corneal haze suppression after air assisted lamellar keratectomy", Journal of Veterinary Medical Science 78, (3) 419–25. [39] Diniz A. da S. and Santos L. M. (2000), "Vitamin A deficiency and xerophtalmia", J Pediatr (Rio J) 76 Suppl 3, S311-322. [40] Vauclair S., Majo F., Durham A-D., Ghyselinck N. B., Barrandon Y. and Radtke F. (2007), "Corneal epithelial cell fate is maintained during repair by Notch1 signaling via the regulation of vitamin A metabolism" Dev Cell 13, (2) 242–53. [41] Twining S. S., Schulte D. P., Zhou X., Wilson P. M., Fish B. L. and Moulder J. E. (1997), "Changes in rat corneal matrix metalloproteinases and serine proteinases under vitamin A deficiency", Curr Eye Res 16, (2) 158–65. [42] Chelala E., Dirani A., Fadlallah A. and Fahd S. (2013), "The role of topical vitamin A in promoting healing in surface refractive procedures: a prospective randomized controlled study", Clin Ophthalmol 7 1913–8. [43] Vetrugno M., Maino A., Cardia G., Quaranta G. M. and Cardia L. (2001), "A randomised, double masked, clinical trial of high dose vitamin A and vitamin E supplementation after photorefractive keratectomy" British Journal of Ophthalmology 85, (5) 537–9. [44] Olivieri M., Cristaldi M., Pezzino S., Lupo G., Anfuso C. D., Gagliano C., Genovese C. and Rusciano D. (2018), "Experimental Evidence of the Healing Properties of Lactobionic Acid for Ocular Surface Disease", Cornea 37, (8) 1058–63. [45] Tani E., Katakami C. and Negi A. (2002), "Effects of Various Eye Drops on Corneal Wound Healing after Superficial Keratectomy in Rabbits" Japanese Journal of Ophthalmology 46, (5) 488–95. [46] Asari A., Morita M., Sekiguchi T., Okamura K., Horie K. and Miyauchi S. (1996), "Hyaluronan, CD44 and Fn in rabbit corneal epithelial wound healing" Jpn J Ophthalmol 40, (1) 18–25.