Biofilm Formation by Marine Cobetia marina alex and Pseudoalteromonas spp: Development and Detection of Quorum Sensing N-Acyl Homoserine Lactones (AHLs) Molecules
Source: By:Samia S. Abouelkheir, Eman A. Abdelghany, Soraya A. Sabry, Hanan A. Ghozlan
DOI: https://doi.org/10.30564/jms.v3i3.3397
Abstract:Surfaces submerged in seawater are colonized by various microorganisms, resulting in the formation of heterogenic marine biofilms. This work aims to evaluate the biofilm formation by Cobetia marina alex and doing a comparative study between this promising strain with the two bacterial strains isolated previously from the Mediterranean seawater, Alexandria, Egypt. Three strains; Cobetia marina alex, Pseudoalteromonas sp. alex, and Pseudoalteromonas prydzensis alex were screened for biofilm formation using the crystal violet (CV) quantification method in a single culture. The values of biofilm formed were OD600= 3.0, 2.7, and 2.6, respectively leading to their selection for further evaluation. However, factors affecting biofilm formation by C. marina alex were investigated. Biofilm formation was evaluated in single and multispecies consortia. Synergistic and antagonistic interactions proved in this work lead to the belief that these bacteria have the capability to produce some interesting signal molecules N-acyl Homoserine Lactones (AHLs)
References:[1]Hawley AK, Nobu MK, Wright JJ, Durno WE, Morgan-Lang C, Sage B, Schwientek P, Swan BK, Rinke C, Torres-Beltrán, M. et al. 2017. Diverse Marinimicrobia bacteria may mediate coupled biogeochemical cycles along eco-thermodynamic gradients. Nat. Commun. 8: 1507. DOI: 10.1038/s41467-017-01376-9. [2]de Carvalho CCCR, Caramujo M.J. 2012. Lipids of prokaryotic origin at the base of marine food webs. Mar. Drugs. 10: 2698-2714. DOI: 10.3390/md10122698de. [3]Brooks AN, Turkarslan S, Beer KD, Lo FY, Baliga NS. 2011. Adaptation of cells to new environments. Wiley Interdiscip. Rev. Syst. Biol. Med. 3: 544-561. DOI: 10.1002/wsbm.136. [4]Tahrioui, A. Duchesne R, Bouffartigues E, Rodrigues S, Maillot O, Tortuel D, Hardouin J, Taupin L, Groleau, M-C, Dufour, A. et al. 2019. Extracellular DNA release, quorum sensing, and PrrF1/ F2 small RNAs are key players in Pseudomonas aeruginosa to bramycin-enhanced biofilm formation. npj Biofilms Microbiomes. 5 (15): 1-10. [5]Caruso G. 2020. Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. J. Mar. Sci. Eng. 8: 78. DOI: 10.3390/jmse8020078. [6]de Carvalho CCCR. 2018. Marine Biofilms: A Successful Microbial Strategy With Economic Implications. Front. Mar. Sci. 5: 126. DOI: 10.3389/fmars.2018.00126. [7]Antunes LC, Ferreira RB, Buckner MM, Finlay BB. 2010. Quorum sensing in bacterial virulence. Microbiology. 156: 2271-2282. [8]Khatoon Z, McTiernan CD, Suuronen EJ, Mah T, Alarcon EI. 2018. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 4: 1-36. [9]Akuzov D, Franca L, Grunwald I, Vladkova T. 2018. Sharply Reduced Biofilm Formation from Cobetia marina and in Black Sea Water on Modified Siloxane Coatings. Coat. 8: 136. DOI: 10.3390/coatings8040136. [10]Kim M-S, Roh SW, Bae J-W. 2010. Cobetia crustatorum sp. nov, a novel slightly halophilic bacterium isolated from traditional fermented seafood in Korea. Int. J. Syst. Evol. Microbiol. 60: 620-626. DOI: 10.1099/ijs.0.008847-0. [11]Cobet AB, Wirsen C, Jones GE. 1970. The effect of nickel on a marine bacterium, Arthrobacter marinus sp. nov J. Gen. Microbiol. 62: 159-169. [12] Baumann L, Baumann P, Mandel M, Allen RD. 1972. Taxonomy of aerobic marine eubacteria. J. Bacteriol. 110: 402-429. [13] Baumann L, Bowditch RD, Baumann P. 1983. Description of Deleya gen. nov created to accommodate the marine species Alcaligenes aestus, A. pacificus, A. cupidus, A. venustus, and Pseudomonas marina. Int. J. Syst. Bacteriol. 33: 793-802. [14] Dobson SJ, Franzmann PD. 1996. Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) into a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae. Int. J. Syst. Bacteriol. 46: 550-558. [15] Arahal DR, Castillo AM, Ludwig W, Schleifer KH, Ventosa A. 2002a. Proposal of Cobetia marina gen. nov, comb. nov, within the family Halomonadaceae, to include the species Halomonas marina. Syst. Appl. Microbiol. 25: 207-211. [16] Arahal DR, Ludwig W, Schleifer KH, Ventosa A. 2002b. Phylogeny of the family Halomonadaceae based on 23S and 16S rDNA sequence analyses. Int. J. Syst. Evol. Microbiol. 52: 241-249. [17] Zeng Z, Cai X, Wang P, Guo Y, Liu X, Li B, Wang X. 2017. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913. Front. Microbiol. 8: 1822. DOI: 10.3389/fmicb.2017.01822. [18] Ballestriero F, Thomas T, Burke C, Egan S, Kjelleberg S. 2010. Identification of compounds with bioactivity against the nematode Caenorhabditis elegans by a screen based on the functional genomics of the marine bacterium Pseudoalteromonas tunicata D2. Appl. Environ. Microbiol. 76: 5710-5717. DOI: 10.1128/Aem.00695-10. [19] Abouelkheir SS, Abdelghany EA, Ghozlan HA, Sabry SA. 2020. Characterization of Biofilm Forming Marine Pseudoalteromonas spp. J. Mar. Sci. 2 (1): 31-37. DOI: https://doi.org/10.30564/jms.v2i1.1412. [20] Kumar MA, Anandapandian KTK, Parthiban K. 2011. Production and characterization of exopolysaccharides (EPS) from biofilm forming marine bacterium. Braz. Arch. Biol. Technol. 54 (2): 259-265. [21] Hassan, A. Usman J, Kaleem F, Omair M, Khalid A, Iqbal M. 2011. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. j. infect. dis. 15 (4): 305-311. [22] Haney EF, Trimble MJ, Cheng JT, Vallé Q, Hancock REW. 2018. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules. 8 (29): 1-22. [23] Walker JN, Horswill AR. 2012. A coverslip-based technique for evaluating Staphylococcus aureus biofilm formation on human plasma. Front. Cell. Infect. Microbiol. 2 (39): 1-5. [24] Casillo A, Lanzetta R, Parrilli M, Corsaro MM. 2018. Exopolysaccharides from Marine and Marine Extremophilic Bacteria: Structures, Properties, Ecological Roles and Applications. Mar. Drugs. 16 (69): 1-34. [25] Liu J, Fu K, Wang Y, Wu C, Li F, Shi L, Ge Y, Zhou L. 2017. Detection of Diverse N-Acyl-Homoserine Lactones in Vibrio alginolyticus and Regulation of Biofilm Formation by N-(3-Oxodecanoyl) Homoserine Lactone In vitro. Front. Microbiol. 8: 1097. https:// doi.org/10.3389/fmicb.2017.01097. [26] Simões M, Simões LC, Vieira MJ. 2010. A review of current and emergent biofilm control strategies. LWT - Food Sci Technol. 43: 4: 573-583. http://dx.doi. org/10.1016/j.lwt.2009.12.008. [27] Jasper A, Menegat R, Guerrasommer M, Cazzuloklepzig M, Souza PA. 2006. Depositional cyclicity and paleoecological variability in Quitéria outcrop Rio Bonito Formation, Paraná basin, Brazil. J. South Amer Earth Scienc. 21: 34:276-293. [28] De La Haba RR, Arahal DR, Marquez MC, Ventosa A. 2010. Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int. J. Syst. Evol. Microbiol. 60: 737-748. [29] Tang X, Xu K, Han X, Mo Z, Mao Y. 2018. Complete genome of Cobetia marina JCM 21022T and phylogenomic analysis of the family Halomonadaceae. J. Oceanol. Limnol. 36: 528-536. [30] Franco DC, Signori CN, Duarte RTD, Nakayama CR, Campos LS, Pellizari VH. 2017. High Prevalence of Gammaproteobacteria in the Sediments of Admiralty Bay and North Brans field Basin, Northwestern Antarctic Peninsula. Front. Microbiol. 8: 1-9. [31] Ivanova EP, Zhukova NV, Lysenko AM, Gorshkova NM, Sergeev AF, Mikhailov VV, John P Bowman JP. 2005. Loktanella agnita sp. nov and Loktanella rosea sp. nov, from the north-west Pacific Ocean. Int. J. Syst. Evol. Microbiol. 55: 2203-2207. [32] Flores-Treviño S, Bocanegra-Ibarias P, Camacho-Ortiz A, Morfín-Otero R, Salazar-Sesatty HA, Garza-González E. 2019. Stenotrophomonas maltophilia biofilm: its role in infectious diseases. Expert Rev. Anti. Infect. Ther. 17: 11: 877-893. [33] Domenech M, García E, Moscoso M. 2012. Biofilm formation in Streptococcus pneumoniae. Microb.Biotechnol. 5 (4): 455-465. [34] Anderson OR. 2016. Marine and estuarine natural microbial biofilms: ecological and biogeochemical dimensions. AIMS Microbiol. 2 (3): 304-331. DOI: 10.3934/microbiol.2016.3.304. [35] Amaya-Gómez CV, Hirsch AM, Soto MJ. 2015. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiol. 15: 58. DOI: 10.1186/s12866-015-0390-z. [36] Kimkes TEP, Heinemann M. 2020. How bacteria recognize and respond to surface contact. FEMS Microbiol. Rev. 44(1): 106-122. https://doi.org/10.1093/ femsre/fuz029. [37] Seper A, Pressler K, Kariis A, Haid AG, Roier S, Leitner DR, Reidl J, Tamayo R, Schilda S. 2014. Identification of genes induced in Vibrio cholerae in a dynamic biofilm system. Int. J. Med. Microbiol. 304 (5-6):749-763. [38] Rao D, Webb JS, Kjelleberg S. (2005) Competitive interactions in mixed species biofilms containing the marine bacterium Pseudoaltromonas tunicata. Appl. Environ. Microbiol. 71: 1729-1736. [39] Rao D, Webb JS, Kjelleberg S. 2006. Microbial colonisation and competition on the marine alga Ulva australis. Appl. Environ. Microbiol. 72: 5547-5555. [40] Huang YL, Dobretsov S, Xiong H, Qian PY. 2007. Relevance of biofilm formation of Pseudoalteromonas spongiae for its inductiveness to larval settlement of the polychaete Hydroides elegans. Appl. Environ. Microbiol. 73: 6284-6288. [41] Van Houdt R, Michiels CW. 2010. Biofilm formation and the food industry, a focus on the bacterial outer surface. J. Appl. Microbiol. 109: 1117-1131. [42] Al-Nahas MO, Darwish MM, Ali AE, Amin MA. 2011. Characterization of an exopolysaccharide-producing marine bacterium, isolate Pseudoalteromonas sp. AM. Afr. J. Microbiol. Res. 5 (22): 3823-3831. [43] Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. 2016. Quorum quenching: role in nature and applied developments. FEMS Microbiol. Rev. 40 (1): 86-116. [44] Gui M, Liu L, Wu R, Hu J, Wang S, Li P. 2018. Detection of New Quorum Sensing N-Acyl Homoserine Lactones From Aeromonas veronii. Front. Microbiol. 9: 1712. DOI: 10.3389/fmicb.2018.01712. [45] Chi W, Zheng L, He C, Han B, Zheng M, Gao W, Sun C, Zhou G, Gao X. 2017. Quorum sensing of microalgae associated marine Ponticoccus sp. PD-2 and its algicidal function regulation. AMB Expr. 7: 59. DOI: 10.1186/s13568-017-0357-6. [46] Dobretsov S, Teplitski M, Paul V. 2009. Mini-review: quorum sensing in the marine environment and its relationship to biofouling. J. Bioadhesion Biofilm Res. 25 (5): 413-427. [47] Ibacache-Quiroga, C. Ojeda J, Espinoza-Vergara G, Olivero P, Cuellar M, Dinamarca MA. 2013. The hydrocarbon-degrading marine bacterium Cobetia sp. strain MM1IDA2H-1 produces a biosurfactant that interferes with quorum sensing of fish pathogens by signal hijacking. Microb. Biotechnol. 6 (4): 394-405. https://doi.org/10.1111/1751-7915.12016. [48] Rao D, Skovhus T, Tujula N, Holmström C, Dahllöf I, Webb JS, Kjelleberg S. 2010. Ability of Pseudoalteromonas tunicata to colonize natural biofilms and its effect on microbial community structure. FEMS Microbiol. Ecol. 73 (3): 450-457. [49] Elias S, Banin E. 2012. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol. Rev. 36: 990-1004. [50] Ren D, Madsen J, Sørensen S, Burmølle M. 2015. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9: 81-89. https://doi. org/10.1038/ismej.2014.96. [51] Guillonneau R, Baraquet C, Bazire A, Molmeret M. 2018. Multispecies Biofilm Development of Marine Bacteria Implies Complex Relationships Through Competition and Synergy and Modification of Matrix Components. Front. Microbiol. 9: 1960. DOI: 10.3389/fmicb.2018.01960. [52] Reuben RC, Roy PC, Sarkar SL, Ha S-D, Jahid IK. 2019. Multispecies Interactions in Biofilms and Implications to Safety of Drinking Water Distribution System. Microbiol. Biotechnol. Lett. 47 (4): 473-486. http://dx.doi.org/10.4014/mbl.1907.07007.