An Overview of Oligocene to Recent Sediments of the Western Pacific Warm Pool (WPWP) (International Ocean Discovery Program-IODP Exp. 363) Using Warm and Cool Foraminiferal Species
Source: By:Patrícia Pinheiro Beck Eichler, Christofer Paul Barker, Moab Praxedes Gomes, Helenice Vital
DOI: https://doi.org/10.30564/jms.v3i3.3516
Abstract:We use the excellent sediment recovery of International Ocean Discovery Program (IODP) Exp. 363, in the Western Pacific Warm Pool (WPWP) to assess down-core variations in the abundance of warm versus cool benthic foraminiferal species through a warm benthic foraminifers (WBF) curve. The total percentage of the “warm” shallower species group (Laticarinina pauperata, Cibicidoides kullenbergi, C. robertsonianus, Cibicidoides sp., Hoeglundina elegans, and Bulimina aculeata) and of the “cool” species group from deep waters (Pyrgo murrhina, Planulina wuellerstorfi, Uvigerina peregrina, and Globobulimina hoeglundi, Hopkinsina pacifica) at all sites is used to assess paleo temporal and spatial variations in preservation and marine temperature. Our study sites span water depths ranging from 875 m to 3421 m and our results indicate that well-preserved living and fossil foraminifera characterize mudline and core sediments at all water depths attesting the wide environmental tolerance of these species to temperature and pressure. Using magneto-and biostratigraphy datum, these sediments are of Oligocene age. Our low-resolution study showed that with the exception of core 1486B which the linear tendency of warmer species is toward cool sediments in old times, all of them show that older sediments indicate warmer periods than today, which is expected from Miocene to Recent. Our results provide evidence for the preservation potential of deeply buried sediments, which has implications on climate reconstructions based on the population dynamics of calcareous benthic foraminifera.
References:[1]Debenay, J.P., Geslin, E., Eichler, B.B., Duleba, W., Sylvestre, F. and Eichler, P., (2001). Foraminiferal assemblages in a hypersaline lagoon, Araruama (RJ) Brazil. The Journal of Foraminiferal Research, 31(2), pp.133-151. [2]Hallock, P., 1984. Distribution of selected species of living algal symbiont-bearing foraminifera on two Pacific coral reefs. The Journal of Foraminiferal Research, 14(4), pp.250-261. [3]Hallock, P., 2000. Larger foraminifera as indicators of coral-reef vitality. In Environmental micropaleontology (pp. 121-150). Springer, Boston, MA. [4]A’ziz, A.N.A., Minhat, F.I., Pan, H.J., Shaari, H., Saelan, W.N.W., Azmi, N., Manaf, O.A.R.A. and Ismail, M.N., 2021. Reef foraminifera as bioindicators of coral reef health in southern South China Sea. Scientific Reports, 11(1), pp.1-13. [5]Murray,J. 2006. Ecology and Applications of Benthic Foraminifera. xi + 426 pp. Cambridge, New York, Melbourne: Cambridge University Press. [6]Allen, S. 2010. Environmental controls and distributions of surface foraminifera from the Otter estuary salt marsh, UK: their potential use as sea level indicators. Plymouth Student Scientist 4, 293-324. [7]Eichler, P.P.B., Eichler, B.B., de Miranda, L.B. and Rodrigues, A.R., 2007. Modern foraminiferal facies in a subtropical estuarine channel, Bertioga, São Paulo, Brazil. The Journal of Foraminiferal Research, 37(3), pp.234-247. [8]Eichler, P.P., Billups, K. and Cardona, C.C.V., 2010. Investigating faunal and geochemical methods for tracing salinity in an Atlantic coastal lagoon, Delaware, USA. The Journal of Foraminiferal Research, 40(1), pp.16-35. [9]Horton, B.P. and Murray, J.W., 2007. The roles of elevation and salinity as primary controls on living foraminiferal distributions: Cowpen Marsh, Tees Estuary, UK. Marine Micropaleontology, 63(3-4), pp.169-186. [10]Eichler, P.P., Billups, K., Vital, H. and De Moraes, J.A., 2014. Tracing thermohaline properties and productivity of shelf-water masses using the stable isotopic composition of benthic foraminifera. The Journal of Foraminiferal Research, 44(4), pp.352-364. [11]Martins, M.V.A., Moreno, J.C., Miller, P.I., Miranda, P., Laut, L., Pinheiro, A.E.P., Yamashita, C., Terroso, D.L., Rocha, F., Bernardes, C., 2017. Biocenoses of benthic foraminifera of the Aveiro Continental Shelf (Portugal): influence of the upwelling events and other shelf processes. Journal of Sedimentary Environments, 2 (1): 9-34. [12]Carson, B. E., Francis, J. M., R. M. Leckie, A. W. Droxler, G. R. Dickens, S. J. Jorry, S. J. Bentley, L. C. Peterson, and B. N. Opdyke, 2008. Benthic foraminiferal response to sea level change in the mixed siliciclastic-carbonate system of southern Ashmore Trough (Gulf of Papua), J. Geophys. Res., 113, F01S20. DOI: 10.1029/2006JF000629. [13]Lutze, G. F., 1977. Neogene benthonic foraminifera from Site 369, Leg 41. In Lancelot, Y., Seibold, E., et al., Initial Reports of the Deep Sea Drilling Project, v. 41: Washing-ton (U.S. Government Printing Office), p. 659-666. [14]Lutze, G.F. 2007. Benthic Foraminifers at Site 397: Faunal Fluctuations and Ranges in the Quaternary. doi:10.2973/dsdp.proc.47-1.111.1979DSDP Volume XLVII Part 1. [15]Fedorov A.V., Philander, S.G. 2000. Is El Nino Changing? Science, 288: 1997-2002.Rasmusson, E.M., and Arkin, P.A., 1993. A global view of largescale precipitation variability. Journal of Climate, 6(8):1495-1522. [16] Pierrehumbert, 2000. Climate change and the tropical Pacific: the sleeping dragon wakes, Proc. Natl. Acad. Sci. U.S.A., 97(4): 1355-1358. [17] Rasmussen, E.M., and Arkin, P.A., 1993. A global view of large-scale precipitation variability. Journal of Climate, 6(8):1495-1522. [18]Billups, K. Eichler, P. P. B., Vital H. 2020. Sensitivity of Benthic Foraminifera to Carbon Flux in the Western Tropical Pacific Ocean. Journal of Foraminiferal Research; 50 (2): 235-247. DOI: https://doi.org/10.2113/gsjfr.50.2.235. [19]Rosenthal, Y., Holbourn, A., Kulhanek, D.K., and the Expedition 363 Scientists, 2017. Expedition 363 Preliminary Report: Western Pacific Warm Pool. International Ocean Discovery Program. http://dx.doi. org/10.14379/iodp.pr.363.2017. [20]Morkhoven, F.P.C.M. Van, Berggren, W.A. and Edwards, A.S. 1986. Cenozoic cosmopolitan deep-water benthic foraminifera, Bulletin des Centres de Recherches Exploration-Production Elf-Aquitaine. Mémoire., v.11, p.421. [21]Holbourn, A., Kuhnt, W., Schulz, M. and Erlenkeuser, H., 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature, 438(7067), pp.483-487. [22]Jones, R.W. 1994. The Challenger Foraminifera. Oxford University. Press, Oxford, ix+149pp. [23]Fedorov, A.V., Brierley, C.M., Lawrence, K.T., Liu, Z., Dekens, P.S., Ravelo, A.C. 2013. Patterns and mechanisms of early Pliocene warmth. Nature: 496(7443): 43-49. DOI: 10.1038/nature12003. [24]Pearson, P.N., Ditchfield, P.W., Singano, J. and Harcourt-Brown, K.G., 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413(6855), p.481. [25]Vranes, K. and Gordon, A.L., 2005. Comparison of Indonesian throughflow transport observations, Makassar Strait to eastern Indian Ocean. Geophysical Research Letters, 32(10). [26]Xu, J., Holbourn, A., Kuhnt, W., Jian, Z. and Kawamura, H., 2008. Changes in the thermocline structure of the Indonesian outflow during Terminations I and II. Earth and Planetary Science Letters, 273(1-2), pp.152-162. [27]Oliveira-Silva, P., Barbosa, C. F. and Soares-Gomes, A. “Distribution of macrobenthic foraminifera on brazilian Continental margin between 18ºS-23ºS.” Revista Brasileira de Geociências 35.2 (2016): 209- 216. [28]Gupta, A. K., and Thomas, E. 2003. Initiation of Northern Hemisphere glaciation and strengthening of the northeast Indian monsoon: Ocean Drilling Program Site 758, eastern equatorial Indian Ocean. Geology 31.1 (): 47-50. [29]Banse, K. and English, D.C., 1994. Seasonality of coastal zone color scanner phytoplankton pigment in the offshore oceans. Journal of Geophysical Research: Oceans, 99(C4), pp.7323-7345. [30]Gregg, W.W. and Conkright, M.E., 2002. Decadal changes in global ocean chlorophyll. Geophysical Research Letters, 29(15), pp.20-1. [31]Murray, J.W. and Smart, C.W., 1994. Distribution of smaller benthic foraminifera in the Chagos Archipelago, Indian Ocean. Journal of micropalaeontology, 13(1), pp.47-53. [32]Jannink, N.T., Zachariasse, W.J. and Van der Zwaan, G.J., 1998. Living (Rose Bengal stained) benthic foraminifera from the Pakistan continental margin (northern Arabian Sea). Deep Sea Research Part I: Oceanographic Research Papers, 45(9), pp.1483- 1513. [33]Loubere, P. and Fariduddin, M., 1999. Benthic foraminifera and the flux of organic carbon to the seabed. In Modern foraminifera (pp. 181-199). Springer, Dordrecht. [34]Ohkushi, K.I., Nemoto, N., Murayama, M., Nakamura, T. and Tsukawaki, S., 2000. Paleoceanography of the Oyashio Area during the Last 20, 000 Years Based on Benthic Foraminifera. The Quaternary Research (Daiyonki-kenkyu), 39(5), pp.427-438. [35]Parker, K.W. and Jones, R.T., 1865. VI. On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits and Baffin’s Bay. Philosophical transactions of the Royal Society of London, (155), pp.325-441. [36]Corliss, B.H. and Chen, C., 1988. Morphotype patterns of Norwegian Sea deep-sea benthic foraminifera and ecological implications. Geology, 16(8), pp.716-719. [37] King, S.C., Kemp, A.E., Murray, J.W., 1995. Benthic foraminifer assemblages in Neogene laminated diatom ooze deposits in the eastern equatorial Pacific Ocean (Site 844). In: Mayer, L.A., Pisias, N.G., Janecek, T.R., Palmer-Julson, A., van Andel, T.H. (Eds.), Proc. Ocean Drill. Prog, Sci. Results vol. 138, 665 - 673.