Study of the Formation Conditions of Aluminum Oxide Nanoparticles in an Overstressed Nanosecond Discharge Between Aluminum Electrodes in a Mixture of Nitrogen and Oxygen
Source: By:A. K. Shuaibov, A.Y. Minya, A.A. Malinina, A.N. Malinin, Z.T. Gomoki, V.V. Danylo, Yu.Yu. Bilak
DOI: https://doi.org/10.30564/jmmr.v3i2.2441
Abstract:The results of the study of oscillograms of voltage, current, pulsed electric power and energy input into the plasma of an overstressed nanosecond discharge between aluminum electrodes in argon and mixtures of nitrogen with oxygen (100-1) at pressures in the range of 13.3-103.3 kPa are presented, the emission plasma spectra are studied. It is shown that in mixtures of nitrogen with oxygen at atmospheric pressure, nanoparticles of aluminum oxide (Al2O3) are formed, the luminescence of which manifests itself in the spectral range of 200-600 nm and which is associated with the formation of F-, F + - centers and more complex aggregate formations based on oxygen vacancies. Calculations of the electron-kinetic coefficients of plasma, transport characteristics, such as mean electron energies in the range 5.116-13.41 eV, are given. The electron concentration was 1.6 ∙ 1020 m-3 - 1.1 ∙ 1020 m-3 at a current density of 5.1 ∙ 106 A / m2 and l. 02 ∙ 107 A / m2 on the surface of the electrode of the radiation source (0.196 · 10-4 m2 ). Also drift velocities, temperatures and concentrations of electrons, specific losses of the discharge power for elastic and inelastic processes of collisions of electrons per unit of the total concentration of the mixture from the reduced electric field strength (E / N) for a mixture of aluminum, nitrogen, oxygen, rate constants of collisions of electrons with aluminum atoms on the E / N parameter in plasma on a mixture of aluminum vapor, oxygen and nitrogen = 30: 1000: 100000 Pa at a total mixture pressure of P = 101030 Pa are given.
References:[1] Bityurin V.A., Efimov A.V., Grigorenko A.V., Goryachev S.V., Klimov A.I., Chinnov V.F. Plasma stimulation of aluminum combustion in water vapour. Modern science, 2011, 2(7): 47-51. Available online at: http://modern.science.triacon.org/en/issues/2011/files/2011_2(7)_8.html [2] Bityurin V.A., Grigorenko A.V., Efimov A.V., Klimov A.I., Korshunov O.V., Kutuzov D.T., Chinnov V.F. Spectral and kinetic analysis of a gas-discharge heterogeneous plasma in the flow of an Al, H2O, Ar mixture. High Temperature, 2014, 52(1): 3-13. Available online at: https://elibrary.ru/item.asp?id=21866675 [3] Mesyats G. A. Ecton- Electron Avalanche from metal. Usp. Fizich. Nauk, 1995, 165(6): 601-626. [4] Walters J. P., Malmstadt H.V. Emission Characteristics and Sensitivity in a High-Voltage Spark Discharge. Analytical Chemistry, 1965, 37(12): 1484- 1503. Available online at: https://pubs.acs.org/doi/abs/10.1021/ac60231a010 [5] Walters J. P. Source Parameters and Excitation in a Spark Discharge. Applied Spectroscopy, 1972, 26(1): 1484-1503. Available online at: https://www.osapublishing.org/as/abstract.cfm?uri=as-26-1-17 [6] Kortov V.S., Ermakov A.E., Zatsepin A.F., White M.A., Nikiforov S.V. et al. Features of luminescent properties of nanostructured aluminum oxide, Solid State Physics, 2008, 50(5): 916-920. Available online at: https://link.springer.com/article/10.1134/S1063783408050259 [7] Beloplotov D.V., Tarasenko V.F., Lomaev M.I. Luminescence of aluminum atoms and ions in a repetitively pulsed discharge initiated by runaway electrons in nitrogen. Optics of the atmosphere and ocean, 2016, 29, 2: 96-101. Available online at: https://www.sibran.ru/upload/iblock/f31/f310891d5d0661a5c8090d5dbeddf328.pdf [8] Shuaibov А.K., Minya A.I., Gomoki Z.T., Danilo V.V., Pinzenik P.V. Charachterristics of a High-Current Pulse Discharge in Air wich Ectonic Mechanism of Copper Vapor Injection into a Disharge Gapr. Surface Engineering and Applied Electrochemistry, 2019, 55(1): 65-90. Available online at: https://www.springerprofessional.de/en/characteristics-of-high-current-pulse-discharge-in-air-withecto/16681528 [9] Holovey V.M., Popovych K.P., Prymak M. V., Birov M.M., KrasilinetsV.M., Sidey V.I. X-ray induced optical absorption in Li2B4O7 and Li2B4O7:Cu single crystals and glasses. Physica B, 2014, 450: 34-38. Available online at: https://www.sciencedirect.com/science/article/abs/pii/S0921452614004578 [10] Runaway electrons preionized diffuse discharge / Ed. by V.F. Tarasenko. New York: Nova Science Publishers Inc., 2014: 578. [11] Beloplotov D. V., Tarasenko V. F. On the influence of a cathode shape on the parameters of current pulses of runaway electron beams in a gas discharge when applying voltage pulses with a rise time of 200 ns, Journal of Physics: 2019, 1393(012004): 7. Available online at: https://iopscience.iop.org/article/10.1088/1742-6596/1393/1/012004 [12] Silvera E., Freitas I.A., Glembocki O.J., Slack G.A., Schowalter L.J. Excitonic structure of bulk AlN from optical reflectivity and cathodoluminescense measurements. Phys. Rev., 2005, 71, (10): 041201- 041204. Available online at: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.041201 [13] Egorov A.E., Chernyshev V.V. Electroluminescence spectra of anodic alumina in various electrolytes. Bulletin of Voronezh State University. Series. Physics mathematics, 2005(2): 8-10. [14] Gasenkova I.V., Mukhurov N.I., Vakhioh Ya.M. Optical properties of anodized aluminum substrates as a basis for threshold detectors. Reports of BSUIR, 2016, 2(96): 114-118. [15] Seredin P.V., Goloshchapov D.L., Lukin A.N., Bondarev A.D., Lenshin A.S. et al. Structure and optical properties of Al2O3 thin films obtained by reactive plasma sputtering on GaAs substrates (100). Physics and technology of semiconductors, 2014, 48(11): 1564-1569. Available online at: https://link.springer.com/article/10.1134%2FS1063782614110256 [16] BOLSIG+ Electron Boltzmann equation solver. Available online at: http://www.bolsig.laplace.univ-tlse.fr [17] Content and usage of the archive Available online at: http://www.ioffe.ru/ES/Elastic/data2.html [18] Electron-Impact Cross Sections for Ionization and Excitation Database . Available online at: https://physics.nist.gov/cgi-bin/Ionization/ion_data.php?id=AlI&ision=I&initial=&total=Y [19] Shimon L.L. Influence of autoionization states on the population of energy levels of atoms of the aluminum subgroup. Scientific Bulletin of UzhNU. Physics Series, 2007, 20: 56-61.