Interpretation of Water Samples by Correspondence Analysis for Radioactive Elements in the Northern Coast of Oman Sea
Source: By:Authors
DOI: https://doi.org/10.30564/jmmr.v5i1.4571
Abstract:[1] Abdi, M., Faghihian, H., Mostajaboddavati, M., et al., 2006. Distribution of natural radionuclides and hot points in coasts of Hormozgan, Persian Gulf, Iran. Journal of Radioanalytical and Nuclear Chemistry. 270(2), 319-324. [2] Alatise, O., Babalola, I., Olowofela, J., 2008. Distribution of some natural gamma-emitting radionuclides in the soils of the coastal areas of Nigeria. Journal of Environmental Radioactivity. 99(11), 1746-1749. [3] Matisoff, G., Ketterer, M.E., Rosén, K., et al., 2011. Downward migration of Chernobyl-derived radionuclides in soils in Poland and Sweden. Applied Geochemistry. 26(1), 105-115. [4] Harb, S., 2008. Natural radioactivity and external gamma radiation exposure at the coastal Red Sea in Egypt. Radiation Protection Dosimetry. 130(3), 376- 384. [5] Uosif, M., El-Taher, A., Abbady, A.G., 2008. Radiological significance of beach sand used for climatotherapy from Safaga, Egypt. Radiation Protection Dosimetry. 131(3), 331-339. [6] Gouda, M., Hamzawy, A., Badawi, M., et al., 2016. Mathematical method to calculate full-energy peak efficiency of detectors based on transfer technique. Indian Journal of Physics. 90(2), 201-210. [7] Xu, L., Liu, X., Sun, L., et al., 2010. Distribution of radionuclides in the guano sediments of Xisha Islands, South China Sea and its implication. Journal of Environmental Radioactivity. 101(5), 362-368. [8] Myrick, T., Berven, B., Haywood, F., 1983. Determination of Concentrations of Selected Radionuclides in Surface Soil in the US. Health Physics. 45(3), 631-642. [9] Kurnaz, A., Küçükömeroğlu, B., Keser, R., et al., 2007. Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Applied Radiation and Isotopes. 65(11), 1281-1289. [10] Mireles, F., Davila, J., Quirino, L., et al., 2003. Natural soil gamma radioactivity levels and resultant population dose in the cities of Zacatecas and Guadalupe, Zacatecas, Mexico. Health Physics. 84(3), 368-372. [11] International Atomic Energy Agency, 2003. Collection and Preparation of Bottom Sediment Samples for Analysis of Radionuclides and Trace Elements. IAEA-TECDOC 1360, IAEA, Vienna (technical report). [12] Yasmin, S., Barua, B.S., Kamal, M., et al., 2014. An Analysis for Distribution of Natural Radionuclides in Soil, Sand and Sediment of Potenga Sea Beach Area of Chittagong, Bangladesh. Journal of Environmental Protection. 5(17), 1553. [13] Zare, M.R., Kamali, M., Kapourchali, M.F., et al., 2016. Investigation of 235U, 226Ra, 232Th, 40K, 137Cs, and heavy metal concentrations in Anzali international wetland using high-resolution gamma-ray spectrometry and atomic absorption spectroscopy. Environmental Science and Pollution Research. 23(4), 3285-3299. [14] Aggrawal, D., Bansal, G., Anand, A., et al., 2016. Types of Customers Surrounding a Brand: A Classification Based on Correspondence Analysis. Communications in Dependability and Quality Management. 19(1), 5-17. [15] Darabi-Golestan, F., Hezarkhani, A., 2018. Evaluation of elemental mineralization rank using fractal and multivariate techniques and improving the performance by log-ratio transformation. Journal of Geochemical Exploration. 189, 11-24. [16] Wang, C.H., 2016. A novel approach to conduct the importance-satisfaction analysis for acquiring typical user groups in business-intelligence systems. Computers in Human Behavior. 54, 673-681. [17] Kumru, M., Bakac, M., 2003. R-mode factor analysis applied to the distribution of elements in soils from the Aydın basin, Turkey. Journal of Geochemical Exploration. 77(2), 81-91. [18] Collins, S.V., Boyce, J.I., 2004. Discriminant Function Analysis of Spectral Gamma Data as a Tool for Regional Stratigraphic Correlation of Pleistocene Deposits. AGU Spring Meeting Abstracts. pp. H41D-06. [19] Swoboda, M., Arlt, R., Gostilo, V., et al., 2005. Spectral gamma detectors for hand-held radioisotope identification devices (RIDs) for nuclear security applications. IEEE transactions on nuclear science. 52(6), 3111-3118. [20] Wershofen, H., Arnold, D., 2005. Radionuclides in Ground-level Air in Braunschweig: Report of the PTB Trace Survey Station from 1998 to 2003, Physikalisch-Technische Bundesanstalt. [21] Darabi-Golestan, F., Hezarkhani, A., Zare, M., 2017. Assessment of 226Ra, 238U, 232Th, 137Cs and 40K activities from the northern coastline of Oman Sea (water and sediments). Marine Pollution Bulletin. 118(1), 197-205. [22] Darabi-Golestan, F., Hezarkhani, A., 2020. Discrimination geochemical interaction effects on mineralization at the polymetallic Glojeh deposit, NW Iran by interative backward quadratic modeling. Acta Geochimica. 39(2), 236-254. [23] Belkhiri, L., Narany, T.S., 2015. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of groundwater quality. Water Resources Management. 29(6), 2073-2089. [24] Deutsch, J.L., Palmer, K., Deutsch, C.V., et al., 2016. Spatial Modeling of Geometallurgical Properties: Techniques and a Case Study. Natural Resources Research. 25(2), 161-181. [25] Akbarpour, A., Gholami, N., Azizi, H., et al., 2013. Cluster and R-mode factor analyses on soil geochemical data of Masjed-Daghi exploration area, northwestern Iran. Arabian Journal of Geosciences. 6(9), 3397-3408. [26] Bu, C.F., Zhang, P., Wang, C., et al., 2016. Spatial distribution of biological soil crusts on the slope of the Chinese Loess Plateau based on canonical correspondence analysis. Catena: An Interdisciplinary Journal of Soil. 137, 373-381. [27] Carranza, E.J.M., 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews. 35(3), 383-400. [28] Darabi-Golestan, F., Hezarkhani, A., 2019. Multivariate analysis of log-ratio transformed data and its priority in mining science: Porphyry and polymetallic vein deposits case studies. Bulletin of the Mineral Research and Exploration. 159(159), 185-200. [29] Ji, H., Zeng, D., Shi, Y., et al., 2007. Semi-hierarchical correspondence cluster analysis and regional geochemical pattern recognition. Journal of Geochemical Exploration. 93(2), 109-119. [30] Abdi, H., Valentin, D., 2007. Multiple correspondence analysis. Encyclopedia of measurement and statistics. pp. 651-657. [31] Anekwe, U.L., Ibe, S.O., 2021. Natural Radioactivity in Some Borehole Water in Ogbia Local Government Area, Bayelsa State, Nigeria. [32] UN Scientific Committee on the Effects of Atomic Radiation, 2000. Sources and effects of ionizing radiation. New York: United Nations Publications. [33] Tsabaris, C., Eleftheriou, G., Kapsimalis, V., et al., 2007. Radioactivity levels of recent sediments in the Butrint Lagoon and the adjacent coast of Albania. Applied Radiation and Isotopes. 65(4), 445-453. [34] Ravisankar, R., Chandramohan, J., Chandrasekaran, A., et al., 2015. Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East coast of Tamilnadu, India with statistical approach. Marine Pollution Bulletin. 97(1), 419-430. [35] Al-Trabulsy, H., Khater, A., Habbani, F., 2011. Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. Radiation Physics and Chemistry. 80(3), 343-348. [36] Amekudzie, A., Emi-Reynolds, G., Faanu, A., et al., 2011. Natural radioactivity concentrations and dose assessment in shore sediments along the coast of Greater Accra, Ghana. World Applied Sciences Journal. 13(11), 2338-2343. [37] Dar, M.A., El Saman, M.I., 2012. The radiation hazards of some radio-elements in petroleum and phosphate regions along the Red Sea, Egypt. Proceeding of The Third International on Radiation Sciences and Applications. 5(2), 920. [38] Darabi-Golestan, F., Hezarkhani, A., Zare, M.R., 2019. Geospatial analysis and assessment of 226Ra, 235U, 232Th, 137Cs, and 40K at Anzali wetland, north of Iran. Environmental Monitoring and Assessment. 191(6), 1-15.