Antibacterial Potential of Pulp Capping Materials
Source: By:Author(s)
DOI: https://doi.org/10.30564/nmms.v5i2.6182
Abstract:A critical analysis of the antibacterial effect of the main representatives of calcium silicate cements (CSCs) was made. An analysis of the most frequently used methods for screening the antibacterial activity of materials has been made. The inhibitory activity of CSCs against major types of microorganisms such as Candia albicans, E. faecalis, and strains streptococcus was evaluated and compared. The antibacterial effects of CSCs are not yet well and completely known because no evidence compares the antibacterial properties of bioceramic materials with a uniform methodological approach. It is important to provide standardization of testing methods for evaluating the antibacterial potential of the materials and different bacterial strains. To this stage, there are no reproducible and standardized methods for evaluating of antibacterial activity of CSCs.
References:[1] Kunert, M., Lukomska-Szymanska, M., 2020. Bio-inductive materials in direct and indirect pulp capping—a review article. Materials. 13(5), 1204. DOI: https://doi.org/10.3390/ma13051204 [2] Dammaschke, T., 2008. The history of direct pulp capping. Journal of the History of Dentistry. 56(1), 9–23. [3] Bjørndal, L., Reit, C., Bruun, G., et al., 2010. Treatment of deep caries lesions in adults: Randomized clinical trials comparing stepwise vs. direct complete excavation, and direct pulp capping vs. partial pulpotomy. European Journal of Oral Sciences. 118(3), 290–297. DOI: https://doi.org/10.1111/j.1600-0722.2010.00731.x [4] Bjørndal, L., Simon, S., Tomson, P.L., et al., 2019. Management of deep caries and the exposed pulp. International Endodontic Journal. 52(7), 949–973. DOI: https://doi.org/10.1111/iej.13128 [5] Schwendicke, F., Meyer-Lueckel, H., Dörfer, C., et al., 2013. Failure of incompletely excavated teeth—a systematic review. Journal of Dentistry. 41(7), 569–580. DOI: https://doi.org/10.1016/j.jdent.2013.05.004 [6] Estrela, C., Sydney, G.B., Bammann, L.L., et al., 1995. Mechanism of the action of calcium and hydroxy ions of calcium hydroxide on tissue and bacteria. Brazilian Dental Journal. 6(2), 85–90. [7] Camilleri, J., 2015. Mineral trioxide aggregate: Present and future developments. Endodontic Topics. 32(1), 31–46. DOI: https://doi.org/10.1111/etp.12073 [8] Duarte, M.A.H., de Oliveira Demarchi, A.C.C., Yamashita, J.C., et al., 2003. pH and calcium ion release of 2 root-end filling materials. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology. 95(3), 345–347. DOI: https://doi.org/10.1067/moe.2003.12 [9] Torabinejad, M., Hong, C.U., McDonald, F., et al., 1995. Physical and chemical properties of a new root-end filling material. Journal of Endodontics. 21(7), 349–353. DOI: https://doi.org/10.1016/S0099-2399(06)80967-2 [10] Al-Hezaimi, K., Al-Shalan, T.A., Naghshbandi, J., et al., 2006. Antibacterial effect of two mineral trioxide aggregate (MTA) preparations against Enterococcus faecalis and Streptococcus sanguis in vitro. Journal of Endodontics. 32(11), 1053–1056. DOI: https://doi.org/10.1016/j.joen.2006.06.004 [11] Stenhouse, M., Zilm, P., Ratnayake, J., et al., 2018. Investigation of the effect of rapid and slow external pH increases on Enterococcus faecalis biofilm grown on dentine. Australian Dental Journal. 63(2), 224–230. DOI: https://doi.org/10.1111/adj.12582 [12] Kharouf, N., Arntz, Y., Eid, A., et al., 2020. Physicochemical and antibacterial properties of novel, premixed calcium silicate-based sealer compared to powder—liquid bioceramic sealer. Journal of Clinical Medicine. 9(10), 3096. DOI: https://doi.org/10.3390/jcm9103096 [13] Koutroulis, A., Kuehne, S.A., Cooper, P.R., et al., 2019. The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Scientific Reports. 9, 19019. DOI: https://doi.org/10.1038/s41598-019-55288-3 [14] Siqueira Jr, J.F., Lopes, H., 1999. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. International Endodontic Journal. 32(5), 361–369. DOI: https://doi.org/10.1046/j.1365-2591.1999.00275.x [15] Camilleri, J., Wang, C., Kandhari, S., et al., 2022. Methods for testing solubility of hydraulic calcium silicate cements for root-end filling. Scientific Reports. 12, 7100. DOI: https://doi.org/10.1038/s41598-022-11031-z [16] Bansal, K., Jain, A., Aggarwal, N., et al., 2020. Biodentine vs MTA: A comparitive analysis. International Journal of Oral Health Dentistry. 6(3), 201–208. DOI: https://doi.org/10.18231/j.ijohd.2020.042 [17] Dutta, A., Saunders, W.P., 2014. Calcium silicate materials in endodontics. Dental Update. 41(8), 708–722. DOI: https://doi.org/10.12968/denu.2014.41.8.708 [18] Duncan, H.F., Galler, K.M., Tomson, P.L., et al., 2019. European Society of Endodontology position statement: Management of deep caries and the exposed pulp. International Endodontic Journal. 52(7), 923–934. DOI: https://doi.org/10.1111/iej.13080 [19] Camilleri, J., 2014. Mineral trioxide aggregate in dentistry: From preparation to application. Springer: Berlin. [20] Nabeel, M., Tawfik, H.M., Abu-Seida, A.M., et al., 2019. Sealing ability of Biodentine versus ProRoot mineral trioxide aggregate as root-end filling materials. The Saudi Dental Journal. 31(1), 16–22. DOI: https://doi.org/10.1016/j.sdentj.2018.08.001 [21] García-Mota, L.F., Hardan, L., Bourgi, R., et al., 2022. Light-cured calcium silicate based-cements as pulp therapeutic agents: A meta-analysis of clinical studies. Journal of Evidence-Based Dental Practice. 22(4), 101776. DOI: https://doi.org/10.1016/j.jebdp.2022.101776 [22] Park, S.M., Rhee, W.R., Park, K.M., et al., 2021. Calcium silicate-based biocompatible light-curable dental material for dental pulpal complex. Nanomaterials. 11(3), 596. DOI: https://doi.org/10.3390/nano11030596 [23] Balouiri, M., Sadiki, M., Ibnsouda, S.K., 2016. Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis. 6(2), 71–79. DOI: http://dx.doi.org/10.1016/j.jpha.2015.11.005 [24] Sipert, C.R., Hussne, R.P., Nishiyama, C.K., et al., 2005. In vitro antimicrobial activity of fill canal, sealapex, mineral trioxide aggregate, Portland cement and endorez. International Endodontic Journal. 38(8), 539–543. DOI: https://doi.org/10.1111/j.1365-2591.2005.00984.x [25] Çobankara, F.K., Altinöz, H.C., Erganiş, O., et al., 2004. In vitro antibacterial activities of root-canal sealers by using two different methods. Journal of Endodontics. 30(1), 57–60. DOI: https://doi.org/10.1097/00004770-200401000-00013 [26] Weiss, E.I., Shalhav, M., Fuss, Z., 1996. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Dental Traumatology. 12(4), 179–184. DOI: https://doi.org/10.1111/j.1600-9657.1996.tb00511.x [27] Zhang, H., Shen, Y., Ruse, N.D., et al., 2009. Antibacterial activity of endodontic sealers by modified direct contact test against Enterococcus faecalis. Journal of Endodontics. 35(7), 1051–1055. DOI: https://doi.org/10.1016/j.joen.2009.04.022 [28] Reller, L.B., Weinstein, M., Jorgensen, J.H., et al., 2009. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clinical Infectious Diseases. 49(11), 1749–1755. DOI: https://doi.org/10.1086/647952 [29] Zhang, H., Pappen, F.G., Haapasalo, M., 2009. Dentin enhances the antibacterial effect of mineral trioxide aggregate and bioaggregate. Journal of Endodontics. 35(2), 221–224. DOI: https://doi.org/10.1016/j.joen.2008.11.001 [30] Šimundić Munitić, M., Poklepović Peričić, T., Utrobičić, A., et al., 2019. Antimicrobial efficacy of commercially available endodontic bioceramic root canal sealers: A systematic review. PLoS One. 14(10), e0223575. DOI: https://doi.org/10.1371/journal.pone.0223575 [31] Leonardo, M.R., Da Silva, L.A.B., Tanomaru Filho, M., et al., 2000. In vitro evaluation of antimicrobial activity of sealers and pastes used in endodontics. Journal of Endodontics. 26(7), 391–394. DOI: https://doi.org/10.1097/00004770-200007000-00003 [32] Tobias, R.S., 1988. Antibacterial properties of dental restorative materials: A review. International Endodontic Journal. 21(2), 155–160. DOI: https://doi.org/10.1111/j.1365-2591.1988.tb00969.x [33] Arias-Moliz, M.T., Farrugia, C., Lung, C.Y., et al., 2017. Antimicrobial and biological activity of leachate from light curable pulp capping materials. Journal of Dentistry. 64, 45–51. DOI: https://doi.org/10.1016/j.jdent.2017.06.006 [34] Desai, U.D., Ugale, V., Killeker, T., et al., 2019. A comparative evaluation of the antibacterial and antifungal efficacy of different root and filling materials using tube dilution method—an in vitro study. International Journal of Advanced Research. 7(4), 541–546. DOI: https://doi.org/10.21474/IJAR01/8850 [35] Ashofteh Yazdi, K., Ghabraei, S., Bolhari, B., et al., 2019. Microstructure and chemical analysis of four calcium silicate-based cements in different environmental conditions. Clinical Oral Investigations. 23, 43–52. DOI: https://doi.org/10.1007/s00784-018-2394-1 [36] Torabinejad, M., Hong, C.U., Ford, T.P., et al., 1995. Antibacterial effects of some root end filling materials. Journal of Endodontics. 21(8), 403–406. DOI: https://doi.org/10.1016/S0099-2399(06)80824-1 [37] Estrela, C., Bammann, L.L., Estrela, C.R.D.A., et al., 2000. Antimicrobial and chemical study of MTA, Portland cement, calcium hydroxide paste, Sealapex and Dycal. Brazilian Dental Journal. 11(1), 3–9. [38] Miyagak, D.C., Robazza, C.R.C., Chavasco, J.K., et al., 2006. In vitro evaluation of the antimicrobial activity of endodontic sealers. Brazilian Oral Research. 20(4), 303–306. DOI: https://doi.org/10.1590/s1806-83242006000400004 [39] Asgary, S., Kamrani, F.A., Taheri, S., 2007. Evaluation of antimicrobial effect of MTA, calcium hydroxide, and CEM cement. Iranian Endodontic Journal. 2(3), 105–109. [40] Tanomaru-Filho, M., Tanomaru, J.M., Barros, D.B., et al., 2007. In vitro antimicrobial activity of endodontic sealers, MTA-based cements and Portland cement. Journal of Oral Science. 49(1), 41–45. DOI: https://doi.org/10.2334/josnusd.49.41 [41] Jerez-Olate, C., Araya, N., Alcántara, R., et al., 2022. In vitro antibacterial activity of endodontic bioceramic materials against dual and multispecies aerobic-anaerobic biofilm models. Australian Endodontic Journal. 48(3), 465–472. DOI: https://doi.org/10.1111/aej.12587 [42] Vakil, N., Kaur, B., Chhoker, V.K., et al., 2019. Antibacterial property of biodentine and mineral trioxide aggregate cement against streptococcus and enterococcus. Saudi Journal of Oral and Dental Research. 4(6), 388–391. [43] Jose, J., Shoba, K., Tomy, N., et al., 2016. Comparative evaluation of antimicrobial activity of Biodentine and MTA against Enterococcus faecalis an in vitro study. International Journal of Dental Research. 4(1), 16–18. [44] Bhavana, V., Chaitanya, K.P., Gandi, P., et al., 2015. Evaluation of antibacterial and antifungal activity of new calcium-based cement (Biodentine) compared to MTA and glass ionomer cement. Journal of Conservative Dentistry. 18(1), 44–46. [45] Ravindran, V., Jeevanandan, G., 2023. Comparative evaluation of the physical and antimicrobial properties of mineral trioxide aggregate, biodentine, and a modified fast-setting mineral trioxide aggregate without tricalcium aluminate: An in vitro study. Cureus. 15(8), e42856. DOI: https://doi.org/10.7759/cureus.42856 [46] Jain, A.S., Gupta, A.S., Agarwal, R., 2018. Comparative evaluation of the antibacterial activity of two Biocompatible materials ie Biodentine and MTA when used as a direct pulp capping agent against streptococcus mutans and Enterococcus faecalis—An in vitro study. Endodontology. 30(1), 66–68. [47] Chopra, M.S., Gulve, M.N., 2016. Evaluation of the antibacterial and antifungal activity of three retrograde filling materials: An in vitro study. International Journal of Contemporary Medical Research. 3(8), 2286–2288. [48] Koruyucu, M., Topcuoglu, N., Tuna, E.B., et al., 2015. An assessment of antibacterial activity of three pulp capping materials on Enterococcus faecalis by a direct contact test: An in vitro study. European Journal of Dentistry. 9(2), 240–245. DOI: https://doi.org/10.4103/1305-7456.156837 [49] Możyńska, J., Nowicka, A., Kaczała, M., et al., 2017. Antifungal properties of selected calcium silicate-based cements. Journal of Stomatology. 70(1), 41–50. [50] Rakesh, Chhabra, V., Sonia, 2020. A comparative evaluation of calcium and pH release in MTA and biodentine. International Journal of Research in Health and Allied Sciences. 6(5), 50–53. [51] Chrakhan, A., Al-Qaisi, S., 2014. Assessment of calcium ions diffusion and pH measurements of three intracanal medicaments through dentinal tubules (in vitro comparative study). Sulaimani Dental Journal. 1(2), 6. DOI: https://doi.org/10.17656/sdj.10023 [52] Herrera-Trinidad, R., Molinero-Mourelle, P., Fonseca, M., et al., 2023. Assessment of pH value and release of calcium ions in calcium silicate cements: An in vitro comparative study. Materials. 16(18), 6213. DOI: https://doi.org/10.3390/ma16186213 [53] Hiremath, G.S., Kulkarni, R.D., Naik, B.D., 2015. Evaluation of minimal inhibitory concentration of two new materials using tube dilution method: An in vitro study. Journal of Conservative Dentistry. 18(2), 159. [54] Ji, M., Chi, Y., Wang, Y., et al., 2022. An in vitro evaluation of antimicrobial activity of a fast-setting endodontic material. Scientific Reports. 12, 16021. DOI: https://doi.org/10.1038/s41598-022-20454-7 [55] Tran, M.A., 2018. Antibacterial activity of current endodontic repair materials against Enterococcus faecalis. [Master’s thesis]. Morgantown: West Virginia University. DOI: https://doi.org/10.33915/etd.8198 [56] Akin, D., Ateş, M., Atalayin Özkaya, Ç., 2023. Antibacterial activity of different pulp capping materials after completed setting reaction. Journal of Ege University School of Dentistry. 44(2), 109–115. DOI: https://doi.org/10.5505/eudfd.2023.24392 [57] Poggio, C., Arciola, C.R., Beltrami, R., et al., 2014. Cytocompatibility and antibacterial properties of capping materials. The Scientific World Journal. DOI: https://doi.org/10.1155/2014/181945 [58] Bakir, E.P., Bakir, Ş., Ünal, S., 2021. Comparison of antibacterial effects of pulp capping materials. Selcuk Dental Journal. 8(2), 553–560. DOI: https://doi.org/10.15311/selcukdentj.896007 [59] Farrugia, C., Lung, C.Y., Wismayer, P.S., et al., 2018. The relationship of surface characteristics and antimicrobial performance of pulp capping materials. Journal of Endodontics. 44(7), 1115–1120. DOI: https://doi.org/10.1016/j.joen.2018.04.002 [60] Fathy, S.M., Abd El-Aziz, A.M., Labah, D.A., 2019. Cellular interaction and antibacterial efficacy of two hydraulic calcium silicate-based cements: Cell-dependent model. Journal of Conservative Dentistry. 22(1), 17–22. [61] Kontakiotis, E.G., Tzanetakis, G.N., Loizides, A.L., 2007. A comparative study of contact angles of four different root canal sealers. Journal of Endodontics. 33(3), 299–302. DOI: https://doi.org/10.1016/j.joen.2006.11.016 [62] Lee, J.B., Derome, D., Carmeliet, J., 2016. Drop impact on natural porous stones. Journal of Colloid and Interface Science. 469, 147–156. DOI: https://doi.org/10.1016/j.jcis.2016.02.008 [63] Kabir, H., Garg, N., 2023. Rapid prediction of cementitious initial sorptivity via surface wettability. npj Materials Degradation. 7, 52. DOI: https://doi.org/10.1038/s41529-023-00371-4 [64] Schembri, M., Peplow, G., Camilleri, J., 2010. Analyses of heavy metals in mineral trioxide aggregate and Portland cement. Journal of Endodontics. 36(7), 1210–1215. DOI: https://doi.org/10.1016/j.joen.2010.02.011 [65] Camilleri, J., Grech, L., Galea, K., et al., 2014. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clinical Oral Investigations. 18, 1437–1446. DOI: https://doi.org/10.1007/s00784-013-1124-y [66] Jardine, A.P., Montagner, F., Quintana, R.M., et al., 2019. Antimicrobial effect of bioceramic cements on multispecies microcosm biofilm: A confocal laser microscopy study. Clinical Oral Investigations. 23, 1367–1372. DOI: https://doi.org/10.1007/s00784-018-2551-6