Study of Hydrophilic Properties of Polysaccharides
Source: By:Michael Ioelovich
DOI: https://doi.org/10.30564/opmr.v3i2.4181
Abstract:In this research, the structural characteristics, specific surface area, sorption of water vapor, and wetting enthalpy of various polysaccharides (cellulose, hemicelluloses, starch, pectin, chitin, and chitosan) have been studied. It was confirmed that crystallites are inaccessible for water, and therefore water molecules can interact only with polar groups in noncrystalline (amorphous) domains of biopolymers. The isotherms of water vapor sorption for various polysaccharides had sigmoid shapes, which can be explained by the absorption of water molecules in heterogeneous amorphous domains having clusters with different packing densities. The method of contributions of polar groups to sorption of water molecules was used, which allowed to derivate a simple calculating equation to describe the shape of sorption isotherms. The wetting of biopolymers with water was accompanied by a high exothermic thermal effect, in direct proportion to the amorphicity degree. The sorption values and wetting enthalpies of amorphous domains of biopolymers were calculated, which allowed to find the hydrophilicity index and compare the hydrophilicity of the various polysaccharides.
References:[1] Thomas, S., Ninan, N., Mohan, S., Francis, E., 2012. Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs. Academic Press: New York. pp. 444. [2] John, M.J., Thomas, S., 2012. Natural Polymers. RCS Publishing: Landon. pp. 313. [3] Kantappa, H., Kim, H.J., Birajdar, M., et al., 2016. Recently developed applications for natural hydrophilic polymers. J. Ind. Eng. Chem. 40, 16-22. DOI: https://doi.org/10.1016/j.jiec.2016.06.01 [4] Ioelovich, M., 2021. Adjustment of hydrophobic properties of cellulose materials. Polymers. 13(8), 1241-1252. DOI: https://doi.org/10.3390/polym13081241 [5] Scheller, H.V., Ulvskov, P., 2010. Hemicelluloses. Ann. Rev. Plant. Biol. 61, 263-89. DOI: https://doi.org/10.1146/annurev-arplant042809-112315 [6] Cornejo-Ramírez, Y.I., Martínez-Cruz, O., Del Toro-Sánchez, C.L., et al., 2018. The structural char-acteristics of starches and their functional properties, CyTA - Journal of Food. 16(1), 1003-1017. DOI: https://doi.org/10.1080/19476337.2018.1518343 [7] Elieh-Ali-Komi, D., Hamblin, M.R., 2016. Chitin and Chitosan: Production and Application. Int. J. Adv. Res. 4(3), 411-427. [8] Marmur, A., 2009. Solid surface characterization by wetting. Ann. Rev. Mater. Res. 39(1), 473-489. DOI: https://doi.org/10.1146/annurev.matsci.38.060407.132425 [9] El-Saftawy, A.A., Abd El Aal, S.A., Badawy, Z.M., Soliman, B.A., 2014. Investigating wettability and optical properties of PADC polymer irradiated by low energy Ar ions. Surface and Coatings Technol. 253, 249-254. DOI: https://doi.org/10.1016/j.surfcoat.2014.05.048 [10] Timmermann, E.O., 2003. Multilayer sorption parameters: BET or GAB values. Colloid Surface A. 220, 235-260. DOI: https://doi.org/10.1016/S0927-7757(03)00059-1 [11] Czepirsky, L., Komarowska-Czepirska, E., Szymonska, J., 2002. Fitting of different models for water vapor sorption on potato starch granules. Appl. Surface Sci. 196(1-4), 150-153. DOI: https://doi.org/10.1016/S0169-4332(02)00050-8 [12] Brousse, M.M., Linares, R.A., Vergara, M.L., Nieto, A.B., 2017. Adsorption isotherm of dehydrated mashed cassava from different varieties. RECyT. 19(28), 29-37. [13] Blahovec, J., Yanniotis, S., 2008. GAB generalized equation for sorption phenomena. Food Bioprocess Technol. 1, 82-90. DOI: https://doi.org/10.1007/s11947-007-0012-3 [14] Park, G.S., 1986. Transport Principles-Solution, Diffusion and Permeation in Polymer Membranes. In: Bungay P.M., Lonsdale H.K., de Pinho M.N. (eds) Synthetic Membranes: Science, Engineering and Applications. NATO ASI Series C: Mathematical and Physical Sciences, vol 181. Springer: Dordrecht. pp. 57-108. [15] Bessadok, A., Langevin, D., Gouanvé, F., et al., 2009. Study of water sorption on modified Agave fibres. Carbohyd. Polym. 76, 74-85. DOI: https://doi.org/10.1016/j.carbpol.2008.09.033 [16] Papkov, S.P., Fainberg, E.Z., 1976. Interaction of Cellulose and Cellulosic Materials with Water. Chemistry: Moscow. pp. 232. [17] Zografia, G., Kontnya, M.J., Yangb, A.Y.S., Brennerb, G.S., 1984. Surface area and water vapor sorption of microcrystalline cellulose. Int. J. Pharmac. 18(1-2), 99-116. DOI: https://doi.org/10.1016/0378-5173(84)90111-X [18] Ioelovich, M., 2009. Accessibility and crystallinity of cellulose. Bioresources. 4(3), 1168-1177. DOI: https://doi.org/10.15376/BIORES.4.3.1168-1177 [19] Ioelovich, M., Leykin, A., 2011. Study of sorption properties of cellulose and its derivatives. Bioresorces. 6(1), 178-195. DOI: https://doi.org/10.15376/biores.6.1.178-195 [20] Hill, C.A.S., Norton, A., Newman, G., 2009. The water vapor sorption behavior of natural fibers. J. Appl. Polym. Sci. 112, 1524-1537. DOI: https://doi.org/10.1002/app.29725 [21] Bismarck, A., Aranberri-Askargorta, I., Springer, J., et al., 2002. Surface characterization of flax, hemp and cellulose fibers; surface properties and the water uptake behavior. Polymer composites. 23(5), 872- 894. DOI: https://doi.org/10.1002/pc.10485 [22] Chirkova, J., Andersons, B., Andersone, I., 2007. Study of the structure of wood-related biopolymers by sorption methods. Bioresources. 4(3), 1044-1057. [23] Takur, V.K., Takur, M.K., 2016. Handbook of Sustainable Polymers: Structure and Chemistry. PAN Stanford Publ: New York. pp. 988. [24] Ago, M., Endo, T., Hirotsu, T., 2004. Crystalline transformation of native cellulose from cellulose I to cellulose II polymorph by a ball milling method with a specific amount of water. Cellulose. 11(2), 163- 167. DOI: https://doi.org/10.1023/B:CELL.0000025423.32330.fa [25] Paes, S.S., Sun, Sh., MacNaughtan, W., et al., 2010. The glass transition and crystallization of ball milled cellulose. Cellulose. 17(4), 693-709. DOI: https://doi.org/10.1007/s10570-010-9425-7 [26] Ioelovich, M., 2016. Physico-chemical methods for determination of cellulose crystallinity. ChemXpress. 9(3), 245-251. [27] Ioelovich, M., 2016. Models of supramolecular structure and properties of cellulose. Polymer Sci. A. 58(6), 925-943. DOI: https://doi.org/10.1134/S0965545X16060109 [28] Ioelovich, M., 2016. Study of thermodynamic properties of various allomorphs of cellulose. ChemXpress. 9(3), 259-265. [29] Van Krevelen, D.W., Nijenhuis, K., 2009. Properties of Polymers: Correlations with Chemical Structure. Elsevier: Amsterdam. pp. 1004. [30] Engelund, E.T., 2011. Wood - water interactions: Linking molecular level mechanisms with macroscopic performance. University Press: Copenhagen. pp. 171. [31] Shi, J., Avramidis, S., 2017. Water sorption hysteresis in wood: III physical modeling by molecular simulation. Holzforschung. 71, 733-741. DOI: https://doi.org/10.1515/hf-2016-0231 [32] Agrawal, A.M., Manek, R.V., Kolling, W.M., Neau, S.H., 2004. Water distribution studies within microcrystalline cellulose and chitosan using differential scanning calorimetry and dynamic vapor sorption analysis. J. Pharma. Sci. 93(7), 1766-1779. DOI: https://doi.org/10.1002/jps.20085 [33] Manek, R.V., Builders, P.F., Kolling, W.M., et al., 2012. Physicochemical and binder properties of starch obtained from Cyperus esculentus. AAPSPharm. Sci. Tech. 13(2), 379-388. DOI: https://doi.org/10.1208/s12249-012-9761-z [34] Bertolin, Ch., Ferri, L., Strojecki, M., 2020. Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood. Proc. Struct. Integ. 26, 147-154. DOI: https://doi.org/10.1016/j.prostr.2020.06.018 [35] Grinberg, N., Grushka, E., 2018. Advances in Chromatography. Vol. 54. CRC Press: Boca Raton. pp. 182. [36] Ioelovich, M., 2016. Isophase transitions of cellulose - A short review. Athens J. Sci. 3(4), 309-322.