A Brief Review on Fundamentals of Conductive Polymer (CPs)
Source: By:Authors
DOI: https://doi.org/10.30564/opmr.v4i1.4395
Abstract:[1] Awuzie, C.I., 2017. Conducting Polymers. Materials Today: Proceedings. 4, 5721-5726. DOI: https://doi.org/10.1016/j.matpr.2017.06.036 [2] Harun, M.H., Saion, E., Kassim, A., et al., 2007. Conjugated Conducting Polymers : A Brief Overview, Sensors Peterbrgh. NH. 2, 63-68. http://sedaya.edu.my/jasa/2/papers/08I.pdf [3] Sardar, S., Roy, I., Chakraborty, S., et al., 2021. A selective approach towards synthesis of poly (3-bromo thiophene)/graphene quantum dot composites via in-situ and ex-situ routes: Application in light emis-sion and photocurrent generation. Electrochimica Acta. 365. DOI: https://doi.org/10.1016/j.electacta.2020.137369 [4] Shirzad, M., Karimi, M., 2020. Statistical analysis and optimal design of polymer inclusion membrane for water treatment by Co(II) removal. Desalination and Water Treatment. 182, 194-207. DOI: https://doi.org/10.5004/dwt.2020.25214 [5] Shirzad, M., Karimi, M., Abolghasemi, H., 2019. Polymer inclusion membranes with dinonylnaphthalene sulfonic acid as ion carrier for Co(II) transport from model solutions. Desalination and Water Treatment. 144, 185-200. DOI: https://doi.org/10.5004/dwt.2019.23575 [6] Midya, L., Chettri, A., Pal, S., 2019. Development of a Novel Nanocomposite Using Polypyrrole Grafted Chitosan-Decorated CDs with Improved Photocatalytic Activity under Solar Light Illumination. ACS Sustain. Chemical Engineering. 7, 9416-9421. DOI: https://doi.org/10.1021/acssuschemeng.9b00615 [7] Heeger, H., MacDiarmid, Alan J., Shirakawa, Alan G., 1974. Advanced Information - The Nobel Prize in Chemistry 2000. Nobel Media AB 2019. pp. 1-16. DOI: https://doi.org/10.1007/978-1-84996-290-2 [8] Zhang, C., Liu, L., Okamoto, Y., 2020. Enantioseparation using helical polyacetylene derivatives. Tractrends In Analytical Chemistry. 123, 115762. DOI: https://doi.org/10.1016/j.trac.2019.115762 [9] Miao, Z., Gonsales, S.A., Ehm, C., et al., 2021. Cyclic polyacetylene. Nature Chemistry. 13, 792-799. DOI: https://doi.org/10.1038/s41557-021-00713-2 [10] Wang, S., Sun, Q., Gröning, O., et al., 2019. On-surface synthesis and characterization of individual polyacetylene chains. Nature Chemistry. 11, 924-930. DOI: https://doi.org/10.1038/s41557-019-0316-8 [11] Husain, A., Ahmad, S., Mohammad, F., 2020. Synthesis, characterisation and ethanol sensing application of polythiophene/graphene nanocomposite. Materials Chemistry and Physics. 239,122324. DOI: https://doi.org/10.1016/j.matchemphys.2019.122324 [12] Shiraishi, Y., Matsumoto, M., Ichikawa, S., et al., 2021. Polythiophene-Doped Resorcinol-Formaldehyde Resin Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion. Journal of the American Chemical Society. 143, 12590-12599. DOI: https://doi.org/10.1021/jacs.1c04622 [13] Wang, Q., Qin, Y., Li, M., et al., 2020. Molecular Engineering and Morphology Control of Polythiophene:Nonfullerene Acceptor Blends for High-Performance Solar Cells. Advanced Energy Materials.10, 1-26. DOI: https://doi.org/10.1002/aenm.202002572 [14] Liang, Z., Li, M., Wang, Q., et al., 2020. Optimization Requirements of Efficient Polythiophene: Nonfullerene Organic Solar Cells. Joule. 4, 1278-1295. DOI: https://doi.org/10.1016/j.joule.2020.04.014 [15] Lu, Y., Wang, S., Xiong, C., et al., 2020. Synthesis and characterization of a liquid-like polythiophene and its potential applications. Synthetic Metals. 270, 116603. DOI: https://doi.org/10.1016/j.synthmet.2020.116603 [16] Pang, A.L., Arsad, A., Ahmadipour, M., 2021. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies. 32, 1428-1454. DOI: https://doi.org/10.1002/pat.5201 [17] Maruthapandi, M., Nagvenkar, A.P., Perelshtein, I., et al., 2019. Carbon-Dot Initiated Synthesis of Polypyrrole and Polypyrrole@CuO Micro/Nanoparticles with Enhanced Antibacterial Activity. ACS Applied Polymer Materials. 1, 1181-1186. DOI: https://doi.org/10.1021/acsapm.9b00194 [18] Sahu, S., Kar, P., Bishoyi, N., et al., 2019. Synthesis of Polypyrrole-Modified Layered Double Hydroxides for Efficient Removal of Cr(VI). Journal of Chemical & Engineering Data. 64, 4357-4368. DOI: https://doi.org/10.1021/acs.jced.9b00444 [19] Wang, C., Yang, M., Liu, L., et al., 2020. One-step synthesis of polypyrrole/Fe2O3 nanocomposite and the enhanced response of NO2 at low temperature. Journal of Colloid and Interface Science. 560, 312- 320. DOI: https://doi.org/10.1016/j.jcis.2019.10.076 [20] Yi, T.F., Mei, J., Peng, P.P., et al., 2019. Facile synthesis of polypyrrole-modified Li5Cr7Ti6O25 with improved rate performance as negative electrode material for Li-ion batteries. Composites Part B-Engineering. 167, 566-572. DOI: https://doi.org/10.1016/j.compositesb.2019.03.032 [21] Petsagkourakis, I., Kim, N., Tybrandt, K., et al., 2019. Poly(3,4-ethylenedioxythiophene): Chemical Synthesis, Transport Properties, and Thermoelectric Devices. Advanced Electronic Materials. 5, 1-20. DOI: https://doi.org/10.1002/aelm.201800918 [22] Jiang, Y., Liu, T., Zhou, Y., 2020. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly (3,4-ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Advanced Functional Materials. 2006213, 1-46. DOI: https://doi.org/10.1002/adfm.202006213 [23] Rahimzadeh, Z., Naghib, S.M., Zare, Y., et al., 2020. An overview on the synthesis and recent applications of conducting poly (3,4-ethylenedioxythiophene) (PEDOT) in industry and biomedicine. Journal of Materials Science. 55, 7575-7611. DOI: https://doi.org/10.1007/s10853-020-04561-2 [24] Hui, Y., Bian, C., Xia, S., et al., 2018. Synthesis and electrochemical sensing application of poly(3,4-ethylenedioxythiophene)-based materials: A review. Analytica Chimica Acta. 1022, 1-19. DOI: https://doi.org/10.1016/j.aca.2018.02.080 [25] Namsheer, K., Rout, C.S., 2021. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances. 11, 5659-5697. DOI: https://doi.org/10.1039/d0ra07800j [26] Zhang, Y., Ye, J., Liu, Z., et al., 2020. Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. Journal of Materials Chemistry C. 8, 10868-10879. DOI: https://doi.org/10.1039/d0tc01174f [27] Elacqua, E., Geberth, G.T., Vanden Bout, D.A., et al., 2019. Synthesis and folding behaviour of poly(p-phenylene vinylene)-based β-sheet polychromophores. Chemical Science. 10, 2144-2152. DOI: https://doi.org/10.1039/c8sc05111a [28] Rodrigues, A.C.B., Geisler, I.S., Klein, P., et al., 2020. Designing highly fluorescent, arylated poly(phenylene vinylene)s of intrinsic microporosity. Journal of Materials Chemistry C. 8, 2248-2257. DOI: https://doi.org/10.1039/c9tc06028f [29] Hsu, T.W., Kim, C., Michaudel, Q., 2020. Stereoretentive Ring-Opening Metathesis Polymerization to Access All- cis Poly(p-phenylenevinylene)s with Living Characteristics. Journal of the American Chemical Society. 142, 11983-11987. DOI: https://doi.org/10.1021/jacs.0c04068 [30] Zhang, H., Zhong, H., Dou, F., et al., 2021. Electrospinning bifunctional polyphenylene-vinylene/heated graphene oxide composite nanofibers with luminescent-electrical performance. Thin Solid Films. 725. DOI: https://doi.org/10.1016/j.tsf.2021.138636 [31] Ikizer, B., Lawton, C.W., Orbey, N., 2021. Poly (para-phenylene) fibers - Characterization and preliminary data for conversion to carbon fiber. Polymer (Guildf). 228, 123945. DOI: https://doi.org/10.1016/j.polymer.2021.123945 [32] Pavlović, D., Cohen, S., 2020. Controlled synthesis of unsubstituted high molecular weight poly(: Para -phenylene) via Suzuki polycondensation-thermal aromatization methodology. Polymer Chemistry. 11, 2550-2558. DOI: https://doi.org/10.1039/d0py00001a [33] McBrearty, J., Barker, D., Damavandi, M., et al., 2018. Antimicrobial synergy of cationic grafted poly(para-phenylene ethynylene) and poly(para-phenylene vinylene) compounds with UV or metal ions against Enterococcus faecium. RSC Advances. 8, 23433-23441. DOI: https://doi.org/10.1039/C8RA02673D [34] Lobo, L.S., Matsumoto, K., Jikei, M., et al., 2021. Hyperbranched Polyphenylene as an Electrode for Li-Ion Batteries. Energy Technology. 9, 1-7. DOI: https://doi.org/10.1002/ente.202100374 [35] Zhou, W.X., Cheng, Y., Chen, K.Q., et al., 2020. Thermal Conductivity of Amorphous Materials. Advanced Functional Materials. 30, 1-17. DOI: https://doi.org/10.1002/adfm.201903829 [36] Iqbal, S., Ahmad, S., 2018. Recent development in hybrid conducting polymers: Synthesis, applications and future prospects. Journal of Industrial and Engineering Chemistry. 60, 53-84. DOI: https://doi.org/10.1016/j.jiec.2017.09.038 [37] Han, Y., Dai, L., 2019. Conducting Polymers for Flexible Supercapacitors. Macromol. Chemical Physics. 220, 1-14. DOI: https://doi.org/10.1002/macp.201800355 [38] Tomczykowa, M., Plonska-Brzezinska, M.E., 2019. Conducting polymers, hydrogels and their composites: Preparation, properties and bioapplications. Polymers (Basel). 11, 1-36. DOI: https://doi.org/10.3390/polym11020350 [39] Yildiz, Z., Usta, I., Gungor, A., 2013. Investigation of the Electrical Properties and Electromagnetic Shielding Effectiveness of Polypyrrole Coated Cotton Yarns. Fibres & Textiles in Eastern Europe. 98, 32-37. [40] Yildiz, Z., Usta, I., Gungor, A., 2012. Electrical properties and electromagnetic shielding effectiveness of polyester yarns with polypyrrole deposition. Textile Research Journal. 82, 2137-2148. DOI: https://doi.org/10.1177/0040517512449046 [41] Murugappan, K., Castell, M.R., 2018. Bridging electrode gaps with conducting polymers around the electrical percolation threshold. Electrochemistry Communications. 87, 40-43. DOI: https://doi.org/10.1016/j.elecom.2017.12.019 [42] Li, H., Lambert, C., Stahl, R., 2006. Conducting polymers based on alkylthiopyrroles. Macromolecules. 39, 2049-2055. DOI: https://doi.org/10.1021/ma0601868 [43] Zujovic, Z., Kilmartin, P.A., Travas-sejdic, J., 2020. Polymers. The Special Case on Polyaniline. Molecules. 25, 1-20. [44] Wahane, D.S., Khobragade, Y.F., Gholse, S.B., et al., 2012. Synthesis and Structural Characterization of Polypyrrole / Metal Oxide Composite by NMR Spectroscopy. Journal Chemical Science. 2, 148-153. [45] Hiragond, C.B., Khanna, P.K., More, P.V., 2018. Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: Featured PTh, PPy and PANI. Vacuum. 155, 159-168. DOI: https://doi.org/10.1016/j.vacuum.2018.06.009 [46] Xu, Y., Ma, Y., Ji, X., et al., 2019. Conjugated conducting polymers PANI decorated Bi12O17Cl2 photocatalyst with extended light response range and enhanced photoactivity. Applied Surface Science. 464, 552-561. DOI: https://doi.org/10.1016/j.apsusc.2018.09.103 [47] Krishnaswamy, S., Ragupathi, V., Raman, S., et al., 2019. Optical properties of P-type polypyrrole thin film synthesized by pulse laser deposition technique: Hole transport layer in electroluminescence devices. Optik (Stuttg). 194, 163034. DOI: https://doi.org/10.1016/j.ijleo.2019.163034 [48] Puiggalĺ-Jou, A., Del Valle, L.J., Alemán, C., 2020. Encapsulation and Storage of Therapeutic Fibrin-Homing Peptides using Conducting Polymer Nanoparticles for Programmed Release by Electrical Stimulation. ACS Biomaterials Science & Engineering. 6, 2135-2145. DOI: https://doi.org/10.1021/acsbiomaterials.9b01794 [49] Poddar, A.K., Patel, S.S., Patel, H.D., 2021. Synthesis, characterization and applications of conductive polymers: A brief review. Polymers for Advanced Technologies. 32(2021), 4616-4641. DOI: https://doi.org/10.1002/pat.5483 [50] Prunet, G., Pawula, F., Fleury, G., et al., 2021. A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Materials Today Physics. 18, 100402. DOI: https://doi.org/10.1016/j.mtphys.2021.100402 [51] Wu, J.G., Chen, J.H., Liu, K.T., et al., 2019. Engineering Antifouling Conducting Polymers for Modern Biomedical Applications. ACS Applied Materials & Interfaces. 11, 21294-21307. DOI: https://doi.org/10.1021/acsami.9b04924 [52] Talikowska, M., Fu, X., Lisak, G., 2019. Application of conducting polymers to wound care and skin tissue engineering: A review. Biosens. Bioelectron. 135, 50-63. DOI: https://doi.org/10.1016/j.bios.2019.04.001 [53] Trojanowicz, M., 2003. Application of Conducting Polymers in Chemical Analysis. Microchimica Acta. 143, 75-91. DOI: https://doi.org/10.1007/s00604-003-0066-5 [54] Gereadr, M., Choubey, A., Malhotra, B., 2001. Review: Application of Conducting Polymer to Biosensors, Biosens. Bioelectron. 17, 345-359. [55] Guo, X., Facchetti, A., 2020. The journey of conducting polymers from discovery to application. Nature Materials. 19, 922-928. DOI: https://doi.org/10.1038/s41563-020-0778-5. [56] Kraft, U., Molina-Lopez, F., Son, D., et al., 2020. Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Advanced Electronic Materials. 6, 1-9. DOI: https://doi.org/10.1002/aelm.201900681 [57] Jeong, S.H., Kim, H., Park, M.H., et al., 2019. Ideal conducting polymer anode for perovskite light-emitting diodes by molecular interaction decoupling. Nano Energy. 60, 324-331. DOI: https://doi.org/10.1016/j.nanoen.2019.03.030 [58] Bilal, S., Farooq, S., Shah, A.U.H.A., et al., 2014. Improved solubility, conductivity, thermal stability and corrosion protection properties of poly(o-toluidine) synthesized via chemical polymerization. Synthetic Metals. 197, 144-153. DOI: https://doi.org/10.1016/j.synthmet.2014.09.003 [59] Tüken, T., Yazici, B., Erbil, M., 2005. Electrochemical synthesis of polythiophene on nickel coated mild steel and corrosion performance. Applied Surface Science. 239, 398-409. DOI: https://doi.org/10.1016/j.apsusc.2004.06.006 [60] Marzocchi, M., Gualandi, I., Calienni, M., et al., 2015. Physical and Electrochemical Properties of PEDOT:PSS as a Tool for Controlling Cell Growth. ACS Applied Materials & Interfaces. 7, 17993- 18003. DOI: https://doi.org/10.1021/acsami.5b04768