Study of Structural Characteristics of Cellulose Esters with Different Degrees of Substitution
Source:
By:Michael Ioelovich
DOI: https://doi.org/10.30564/opmr.v4i1.4805
Abstract:[1]Wei, D.W., Wei, H., Gauthier, A.C., et al., 2020. Superhydrophobic modification of cellulose and cotton textiles: Methodologies and applications. Journal Bioresources and Bioproducts. 5, 1-15.
[2]Ioelovich, M., 2021. Adjustment of hydrophobic properties of cellulose materials. Polymers. 13, 1241.
[3]Freire, C.S.R., Silvestre, A.J.D., Neto, C.P., et al., 2005. An efficient method for determination of the degree of substitution of cellulose esters of long chain aliphatic acids. Cellulose. 12, 449-458.
[4]Gocho, H., Shimizu, H., Tanioka, A., et al., 2000. Effect of acetyl content on the sorption isotherm of water by cellulose acetate: comparison with the thermal analysis results. Carbohydrate Polymers. 41, 83-86.
[5]Khoshtinat, S., Carvelli, V., Marano, C., 2021. Moisture absorption measurement and modeling of cellulose acetate. Cellulose. 28, 9039-9050.
[6]Del Gaudio, I., Hunter-Sellars, E., Parkin, I., et al., 2021. Water sorption and diffusion in cellulose acetate: the effect of plasticizers. Carbohydrate Polymers. 267, 118185.
[7]Chalykh, A.E., Bardyshev, I.I., Petrova, T.F., 2021. Free volume and water sorption by cellulose esters. Polymers. 13, 2644.
[8]Ioelovich, M., 2022. Study of water vapor sorption by cellulose esters with different degrees of substitution. World Journal of Advanced Research and Review. 15(1), 214-220.
[9]Edgar, K.J., Buchanan, C.M., Debenham, J.S., et al., 2001. Advances in cellulose ester performance and application. Progress in Polymer Science. 26, 1605- 1688.
[10]Filho, G.R., Monteiro, D.S., Da Silva Meireles, K., et al., 2008. Synthesis and characterization of cellulose acetate produced from recycled newspaper. Carbohydrate Polymers. 73, 74-82.
[11]Fischer, S., Thümmler, K., Volkert, B., et al., 2008. Properties and applications of cellulose acetate. Macromolecular Symposia. 262, 89-96.
[12]Sassy, J.F., Chanzy, H., 1995. Ultrastructural aspects of the acetylation of cellulose. Cellulose. 2, 111-127.
[13]ASTM D792-20 Standard, 2020. Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement.
[14]Duncan, J.C., Price, D.M., 2016. Thermomechanical, Dynamic Mechanical and Dielectric Methods. Principles of Thermal Analysis and Calorimetry, 2nd Edition. Simon Gaisford, Vicky Kett and Peter Haines Eds. Royal Soc.: Cambridge. pp. 265.
[15]Van Krevelen, D.W., Nijenhuis, K., 2009. Properties of Polymers: Correlations with Chemical Structure. Elsevier: Amsterdam. pp. 1004.
[16]Ioelovich, M., Laka, M., 2002. Mesomorphous structure of amorphized cellulose esters. Scientific Israel Technological Advantages. 4, 87-89.
[17]Ioelovich, M., 2022. Study of structural characteristics of cellulose esters. Global Journal of Engineering and Technology Advance. 11(3), 24-30.
[18]Askadsky, A.A., 1995. Quantitative analysis of the influence of chemical structure on the physical properties of polymers. Polymer Science Series B. 37, 332-357.
[19]White, R.P., Lipson, J.E., 2016. Polymer free volume and its connection to the glass transition. Macromolecules. 49, 3987-4007.
[20] Ioelovich, M., 2016. Models of supramolecular structure and properties of cellulose. Polymer Science Series A. 58, 925-943.
