Control of the Dust Vertical Distribution over Western Africa by Convection and Scavenging
Source: By:H. Senghor, R. Pilon, B. Diallo, J. Escribano, F. Hourdin, J. Y. Grandpeix, O. Boucher, M. Gueye, A. T. Gaye, E. Machu
DOI: https://doi.org/10.30564/jasr.v7i1.6009
Abstract:Saharan dust represents more than 50% of the total desert dust emitted around the globe and its radiative effect significantly affects the atmospheric circulation at a continental scale. Previous studies on dust vertical distribution and the Saharan Air Layer (SAL) showed some shortcomings that could be attributed to imperfect representation of the effects of deep convection and scavenging. The authors investigate here the role of deep convective transport and scavenging on the vertical distribution of mineral dust over Western Africa. Using multi-year (2006–2010) simulations performed with the variable-resolution (zoomed) version of the LMDZ climate model. Simulations are compared with aerosol amounts recorded by the Aerosol Robotic Network (AERONET) and with vertical profiles of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements. LMDZ allows a thorough examination of the respective roles of deep convective transport, convective and stratiform scavenging, boundary layer transport, and advection processes on the vertical mineral dust distribution over Western Africa. The comparison of simulated dust Aerosol Optical Depth (AOD) and distribution with measurements suggest that scavenging in deep convection and subsequent re-evaporation of dusty rainfall in the lower troposphere are critical processes for explaining the vertical distribution of desert dust. These processes play a key role in maintaining a well-defined dust layer with a sharp transition at the top of the SAL and in establishing the seasonal cycle of dust distribution. This vertical distribution is further reshaped offshore in the Inter-Tropical Convergence Zone (ITCZ) over the Atlantic Ocean by marine boundary layer turbulent and convective transport and wet deposition at the surface.
References:[1] Washington, R., Todd, M.C., Engelstaedter, S., et al., 2006. Dust and the low-level circulation over the Bodélé Depression, Chad: Observations from BoDEx 2005. Journal of Geophysical Research: Atmospheres. 111(D3). DOI: https://doi.org/10.1029/2005JD006502 [2] Haustein, K., Pérez, C., Baldasano, J.M., et al., 2009. Regional dust model performance during SAMUM 2006. Geophysical Research Letters. 36(3). DOI: https://doi.org/10.1029/2008GL036463 [3] Kaufman, Y.J., Koren, I., Remer, L.A., et al., 2005. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. Journal of Geophysical Research: Atmospheres. 110(D10). DOI: https://doi.org/10.1029/2003JD004436 [4] Senghor, H., Roberts, A.J., Dieng, A.L., et al., 2021. Transport and deposition of Saharan dust observed from satellite images and ground measurements. Journal of Atmospheric Science Research. 4(2), 1–11. DOI: https://doi.org/10.30564/jasr.v4i2.3165 [5] Diokhane, A.M., Jenkins, G.S., Manga, N., et al., 2016. Linkages between observed, modeled Saharan dust loading and meningitis in Senegal during 2012 and 2013. International Journal of Biometeorology. 60, 557–575. DOI: https://doi.org/10.1007/s00484-015-1051-5 [6] Samoli, E., Stafoggia, M., Rodopoulou, S., et al., 2013. Associations between fine and coarse particles and mortality in Mediterranean cities: Results from the MED-PARTICLES project. Environmental Health Perspectives. 121(8), 932–938. DOI: http://dx.doi.org/10.1289/ehp.1206124 [7] Yu, H., Tan, Q., Zhou, L., et al., 2021. Observation and modeling of the historic “Godzilla” African dust intrusion into the Caribbean Basin and the southern US in June 2020. Atmospheric Chemistry and Physics. 21(16), 12359–12383. DOI: https://doi.org/10.5194/acp-21-12359-2021 [8] Creamean, J.M., Suski, K.J., Rosenfeld, D., et al., 2013. Dust and biological aerosols from the Sahara and Asia influence precipitation in the western US. Science. 339(6127), 1572–1578. [9] Sokolik, I.N., Toon, O.B., 1999. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. Journal of Geophysical Research: Atmospheres. 104(D8), 9423–9444. DOI: https://doi.org/10.1029/1998JD200048 [10] Balkanski, Y., Bonnet, R., Boucher, O., et al., 2021. Dust induced atmospheric absorption improves tropical precipitations in climate models. Atmospheric Chemistry and Physics Discussions. DOI: https://doi.org/10.5194/acp-2021-12 [11] Engelstaedter, S., Tegen, I., Washington, R., 2006. North African dust emissions and transport. Earth-Science Reviews. 79(1–2), 73–100. DOI: https://doi.org/10.1016/j.earscirev.2006.06.004 [12] Hourdin, F., Gueye, M., Diallo, B., et al., 2015. Parameterization of convective transport in the boundary layer and its impact on the representation of the diurnal cycle of wind and dust emissions. Atmospheric Chemistry and Physics. 15(12), 6775–6788. DOI: https://doi.org/10.5194/acp-15-6775-2015 [13] Allen, C.J., Washington, R., Engelstaedter, S., 2013. Dust emission and transport mechanisms in the central Sahara: Fennec ground‐based observations from Bordj Badji Mokhtar, June 2011. Journal of Geophysical Research: Atmospheres. 118(12), 6212–6232. DOI: https://doi.org/10.1002/jgrd.50534 [14] Miller, S.D., Kuciauskas, A.P., Liu, M., et al., 2008. Haboob dust storms of the southern Arabian Peninsula. Journal of Geophysical Research: Atmospheres. 113(D1). DOI: https://doi.org/10.1029/2007JD008550 [15] Tost, H., Jöckel, P., Lelieveld, J., 2006. Influence of different convection parameterisations in a GCM. Atmospheric Chemistry and Physics. 6(12), 5475–5493. DOI: https://doi.org/10.5194/acp-6-5475-2006 [16] Tost, H., Lawrence, M.G., Brühl, C., et al., 2010. Uncertainties in atmospheric chemistry modelling due to convection parameterisations and subsequent scavenging. Atmospheric Chemistry and Physics. 10(4), 1931–1951. DOI: https://doi.org/10.5194/acp-10-1931-2010 [17] Pilon, R., Grandpeix, J.Y., Heinrich, P., 2015. Representation of transport and scavenging of trace particlesin the Emanuel moist convection scheme. Quarterly Journal of the Royal Meteorological Society. 141(689), 1244–1258. DOI: https://doi.org/10.1002/qj.2431 [18] Knippertz, P., Stuut, J.B.W., 2014. Introduction. Mineral dust. Springer: Dordrecht. pp. 1–14. DOI: https://doi.org/10.1007/978-94-017-8978-3_1 [19] Malavelle, F., Pont, V., Mallet, M., et al., 2011. Simulation of aerosol radiative effects over West Africa during DABEX and AMMA SOP‐0. Journal of Geophysical Research: Atmospheres. 116(D8). DOI: https://doi.org/10.1029/2010JD014829 [20] Solmon, F., Elguindi, N., Mallet, M., 2012. Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Research. 52, 97–113. DOI: https://doi.org/10.3354/cr01039 [21] Ji, Z., Wang, G., Pal, J.S., et al., 2016. Potential climate effect of mineral aerosols over West Africa. Part I: model validation and contemporary climate evaluation. Climate Dynamics. 46, 1223–1239. DOI: https://doi.org/10.1007/s00382-015-2641-y [22] Schmechtig, C., Marticorena, B., Chatenet, B., et al., 2011. Simulation of the mineral dust content over Western Africa from the event to the annual scale with the CHIMERE-DUST model. Atmospheric Chemistry and Physics. 11(14), 7185–7207. DOI: https://doi.org/10.5194/acp-11-7185-2011 [23] Pérez, C., Haustein, K., Janjic, Z., et al., 2011. Atmospheric dust modeling from meso to global scales with the online NMMB/BSC-Dust model—Part 1: Model description, annual simulations and evaluation. Atmospheric Chemistry and Physics. 11(24), 13001–13027. DOI: https://doi.org/10.5194/acp-11-13001-2011 [24] Escribano, J., Boucher, O., Chevallier, F., et al., 2016. Subregional inversion of North African dust sources. Journal of Geophysical Research: Atmospheres. 121(14), 8549–8566. DOI: https://doi.org/10.1002/2016JD025020 [25] Hu, Z., Huang, J., Zhao, C., et al., 2020. Modeling dust sources, transport, and radiative effects at different altitudes over the Tibetan Plateau. Atmospheric Chemistry and Physics. 20(3), 1507–1529. DOI: https://doi.org/10.5194/acp-20-1507-2020 [26] Kallos, G., Papadopoulos, A., Katsafados, P., et al., 2006. Transatlantic Saharan dust transport: Model simulation and results. Journal of Geophysical Research: Atmospheres. 111(D9). DOI: https://doi.org/10.1029/2005JD006207 [27] Ryder, C.L., Highwood, E.J., Lai, T.M., et al., 2013. Impact of atmospheric transport on the evolution of microphysical and optical properties of Saharan dust. Geophysical Research Letters. 40(10), 2433–2438. DOI: https://doi.org/10.1002/grl.50482 [28] Gasteiger, J., Wiegner, M., Groß, S., et al., 2011. Modelling lidar‐relevant optical properties of complex mineral dust aerosols. Tellus B. 63(4), 725–741. DOI: https://doi.org/10.1111/j.1600-0889.2011.00559.x [29] Adebiyi, A.A., Kok, J.F., Wang, Y., et al., 2020. Dust Constraints from joint Observational-Modelling-experiMental analysis (DustCOMM): Comparison with measurements and model simulations. Atmospheric Chemistry and Physics. 20(2), 829–863. DOI: https://doi.org/10.5194/acp-20-829-2020 [30] Liu, H., Jacob, D.J., Bey, I., et al., 2001. Constraints from 210Pb and 7Be on wet deposition and transport in a global three‐dimensional chemical tracer model driven by assimilated meteorological fields. Journal of Geophysical Research: Atmospheres. 106(D11), 12109–12128. DOI: https://doi.org/10.1029/2000JD900839 [31] Heinrich, P., Jamelot, A., 2011. Atmospheric transport simulation of 210Pb and 7Be by the LMDz general circulation model and sensitivity to convection and scavenging parameterization. Atmospheric Research. 101(1–2), 54–66. DOI: https://doi.org/10.1016/j.atmosres.2011.01.008 [32] Heinrich, P., Pilon, R., 2013. Simulation of 210Pb and 7Be scavenging in the tropics by the LMDz general circulation model. Atmospheric Research. 132, 490–505. DOI: https://doi.org/10.1016/j.atmosres.2013.07.004 [33] Hourdin, F., Rio, C., Grandpeix, J.Y., et al., 2020. LMDZ6A: The atmospheric component of the IPSL climate model with improved and better tuned physics. Journal of Advances in Modeling Earth Systems. 12(7), e2019MS001892. DOI: https://doi.org/10.1029/2019MS001892 [34] Grandpeix, J.Y., Phillips, V., Tailleux, R., 2004. Improved mixing representation in Emanuel’s convection scheme. Quarterly Journal of the Royal Meteorological Society. 130(604), 3207–3222. DOI: https://doi.org/10.1256/qj.03.144 [35] Emanuel, K.A., 1991. A scheme for representing cumulus convection in large-scale models. Journal of the Atmospheric Sciences. 48(21), 2313–2329. DOI: https://doi.org/10.1175/1520-0469(1991)048<2313:ASFRCC>2.0.CO;2 [36] Grandpeix, J.Y., Lafore, J.P., 2010. A density current parameterization coupled with Emanuel’s convection scheme. Part I: The models. Journal of the Atmospheric Sciences. 67(4), 881–897. DOI: https://doi.org/10.1175/2009JAS3044.1 [37] Grandpeix, J.Y., Lafore, J.P., Cheruy, F., 2010. A density current parameterization coupled with Emanuel’s convection scheme. Part II: 1D simulations. Journal of the Atmospheric Sciences. 67(4), 898–922. DOI: https://doi.org/10.1175/2009JAS3045.1 [38] Rochetin, N., Couvreux, F., Grandpeix, J.Y., et al., 2014. Deep convection triggering by boundary layer thermals. Part I: LES analysis and stochastic triggering formulation. Journal of the Atmospheric Sciences. 71(2), 496–514. DOI: https://doi.org/10.1175/JAS-D-12-0336.1 [39] Hourdin, F., Jam, A., Rio, C., et al., 2019. Unified parameterization of convective boundary layer transport and clouds with the thermal plume model. Journal of Advances in Modeling Earth Systems. 11(9), 2910–2933. DOI: https://doi.org/10.1029/2019MS001666 [40] Le Trent, H., Li, Z.X., 1991. Sensitivity of an atmospheric general circulation model to prescribed SST changes: Feedback effects associated with the simulation of cloud optical properties. Climate Dynamics. 5, 175–187. [41] Coindreau, O., Hourdin, F., Haeffelin, M., et al., 2007. Assessment of physical parameterizations using a global climate model with stretchable grid and nudging. Monthly Weather Review. 135(4), 1474–1489. DOI: https://doi.org/10.1175/MWR3338.1 [42] Hourdin, F., Grandpeix, J.Y., Rio, C., et al., 2013. LMDZ5B: The atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Climate Dynamics. 40, 2193–2222. DOI: https://doi.org/10.1007/s00382-012-1343-y [43] Wang, F., Ducharne, A., Cheruy, F., et al., 2018. Impact of a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model. Climate Dynamics. 50, 3505–3522. DOI: https://doi.org/10.1007/s00382-017-3820-9 [44] Krinner, G., Viovy, N., de Noblet‐Ducoudré, N., et al., 2005. A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system. Global Biogeochemical Cycles. 19(1). DOI: https://doi.org/10.1029/2003GB002199 [45] Cheruy, F., Ducharne, A., Hourdin, F., et al., 2020. Improved near‐surface continental climate in IPSL‐CM6A‐LR by combined evolutions of atmospheric and land surface physics. Journal of Advances in Modeling Earth Systems. 12(10), e2019MS002005. DOI: https://doi.org/10.1029/2019MS002005 [46] Marticorena, B., Chatenet, B., Rajot, J.L., et al., 2010. Temporal variability of mineral dust concentrations over West Africa: Analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmospheric Chemistry and Physics. 10(18), 8899–8915. DOI: https://doi.org/10.5194/acp-10-8899-2010 [47] Dee, D.P., Uppala, S.M., Simmons, A.J., et al., 2011. The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society. 137(656), 553–597. DOI: https://doi.org/10.1002/qj.828 [48] Hersbach, H., Bell, B., Berrisford, P., et al., 2020. The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society. 146(730), 1999–2049. DOI: https://doi.org/10.1002/qj.3803 [49] Huneeus, N., Chevallier, F., Boucher, O., 2012. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model. Atmospheric Chemistry and Physics. 12(10), 4585–4606. DOI: https://doi.org/10.5194/acp-12-4585-2012 [50] Menut, L., Pérez, C., Haustein, K., et al., 2013. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling. Journal of Geophysical Research: Atmospheres. 118(12), 6505–6520. DOI: https://doi.org/10.1002/jgrd.50313 [51] Marticorena, B., Bergametti, G., 1995. Modeling the atmospheric dust cycle: 1. Design of a soil‐derived dust emission scheme. Journal of Geophysical Research: Atmospheres. 100(D8), 16415–16430. DOI: https://doi.org/10.1029/95JD00690 [52] Alfaro, S.C., Gomes, L., 2001. Modeling mineral aerosol production by wind erosion: Emission intensities and aerosol size distributions in source areas. Journal of Geophysical Research: Atmospheres. 106(D16), 18075–18084. DOI: https://doi.org/10.1029/2000JD900339 [53] Shao, Y., Lu, H., 2000. A simple expression for wind erosion threshold friction velocity. Journal of Geophysical Research: Atmospheres. 105(D17), 22437–22443. DOI: https://doi.org/10.1029/2000JD900304 [54] Marticorena, B., Bergametti, G., Aumont, B., et al., 1997. Modeling the atmospheric dust cycle: 2. Simulation of Saharan dust sources. Journal of Geophysical Research: Atmospheres. 102(D4), 4387–4404. DOI: https://doi.org/10.1029/96JD02964 [55] Huneeus, N., Boucher, O., Chevallier, F., 2009. Simplified aerosol modeling for variational data assimilation. Geoscientific Model Development. 2(2), 213–229. DOI: https://doi.org/10.5194/gmd-2-213-2009 [56] Reddy, M.S., Boucher, O., 2004. A study of the global cycle of carbonaceous aerosols in the LMDZT general circulation model. Journal of Geophysical Research: Atmospheres. 109(D14). DOI: https://doi.org/10.1029/2003JD004048 [57] Hourdin, F., Armengaud, A., 1999. The use of finite-volume methods for atmospheric advection of trace species. Part I: Test of various formulations in a general circulation model. Monthly Weather Review. 127(5), 822–837. DOI: https://doi.org/10.1175/1520-0493(1999)127<0822:TUOFVM>2.0.CO;2 [58] Yamada, T., 1983. Simulations of nocturnal drainage flows by a q2l turbulence closure model. Journal of the Atmospheric Sciences. 40(1), 91–106. DOI: https://doi.org/10.1175/1520-0469(1983)040<0091:SONDFB>2.0.CO;2 [59] Holben, B.N., Eck, T.F., Slutsker, I.A., et al., 1998. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment. 66(1), 1–16. DOI: https://doi.org/10.1016/S0034-4257(98)00031-5 [60] Léon, J.F., Derimian, Y., Chiapello, I., et al., 2009. Aerosol vertical distribution and optical properties over M’Bour (16.96° W; 14.39° N), Senegal from 2006 to 2008. Atmospheric Chemistry and Physics. 9(23), 9249–9261. DOI: https://doi.org/10.5194/acp-9-9249-2009 [61] Hunt, W.H., Winker, D.M., Vaughan, M.A., et al., 2009. CALIPSO lidar description and performance assessment. Journal of Atmospheric and Oceanic Technology. 26(7), 1214–1228. DOI: https://doi.org/10.1175/2009JTECHA1223.1 [62] Winker, D.M., Hunt, W.H., McGill, M.J., 2007. Initial performance assessment of CALIOP. Geophysical Research Letters. 34(19). DOI: https://doi.org/10.1029/2007GL030135 [63] Winker, D.M., Pelon, J.R., McCormick, M.P., 2003. CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III. 4893, 1–11. DOI: https://doi.org/10.1117/12.466539 [64] Liu, Z., Vaughan, M., Winker, D., et al., 2009. The CALIPSO lidar cloud and aerosol discrimination: Version 2 algorithm and initial assessment of performance. Journal of Atmospheric and Oceanic Technology. 26(7), 1198–1213. DOI: https://doi.org/10.1175/2009JTECHA1229.1 [65] Senghor, H., Machu, É., Hourdin, F., et al., 2017. Seasonal cycle of desert aerosols in western Africa: Analysis of the coastal transition with passive and active sensors. Atmospheric Chemistry and Physics. 17(13), 8395–8410. DOI: https://doi.org/10.5194/acp-17-8395-2017 [66] Adams, A.M., Prospero, J.M., Zhang, C., 2012. CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents. Journal of Climate. 25(19), 6862–6879. DOI: https://doi.org/10.1175/JCLI-D-11-00672.1 [67] Schuster, G.L., Vaughan, M., MacDonnell, D., et al., 2012. Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust. Atmospheric Chemistry and Physics. 12(16), 7431–7452. DOI: https://doi.org/10.5194/acp-12-7431-2012 [68] Tsamalis, C., Chédin, A., Pelon, J., et al., 2013. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmospheric Chemistry and Physics. 13(22), 11235–11257. DOI: https://doi.org/10.5194/acp-13-11235-2013 [69] Vuolo, M.R., Chepfer, H., Menut, L., et al., 2009. Comparison of mineral dust layers vertical structures modeled with CHIMERE‐DUST and observed with the CALIOP lidar. Journal of Geophysical Research: Atmospheres. 114(D9). DOI: https://doi.org/10.1029/2008JD011219 [70] Wallace, J.M., Hobbs, P.V., 2006. Atmospheric science: An introductory survey (Vol. 92). Elsevier: Amsterdam. [71] Weinzierl, B., Ansmann, A., Prospero, J.M., et al., 2017. The Saharan aerosol long-range transport and aerosol–cloud-interaction experiment: overview and selected highlights. Bulletin of the American Meteorological Society. 98(7), 1427–1451. DOI: https://doi.org/10.1175/BAMS-D-15-00142.1 [72] Prospero, J.M., Ginoux, P., Torres, O., et al., 2002. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of Geophysics. 40(1), 21–31. DOI: https://doi.org/10.1029/2000RG000095 [73] Cuesta, J., Marsham, J.H., Parker, D.J., et al., 2009. Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic structure of the West Saharan atmospheric boundary layer during summer. Atmospheric Science Letters. 10(1), 34–42. DOI: https://doi.org/10.1002/asl.207 [74] Ansmann, A., Petzold, A., Kandler, K., et al., 2011. Saharan mineral dust experiments SAMUM–1 and SAMUM–2: What have we learned? Tellus B. 63(4), 403–429. DOI: https://doi.org/10.1111/j.1600-0889.2011.00555.x [75] Hamilton, R.A., Archbold, J.W., Douglas, C.K.M., 1945. Meteorology of Nigeria and adjacent territory. Quarterly Journal of the Royal Meteorological Society. 71(309–310), 231–264. DOI: https://doi.org/10.1002/qj.49707130905 [76] Stuut, J.B., Zabel, M., Ratmeyer, V., et al., 2005. Provenance of present‐day eolian dust collected off NW Africa. Journal of Geophysical Research: Atmospheres. 110(D4). DOI: https://doi.org/10.1029/2004JD005161 [77] Ozer, P., Laghdaf, M.B.O.M., Lemine, S.O.M., et al., 2007. Estimation of air quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal visibility data. Water, Air, and Soil Pollution. 178, 79–87. DOI: https://doi.org/10.1007/s11270-006-9152-8 [78] Yu, H., Chin, M., Yuan, T., et al., 2015. The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophysical Research Letters. 42(6), 1984–1991. DOI: https://doi.org/10.1002/2015GL063040 [79] Goudie, A.S., Middleton, N.J., 2001. Saharan dust storms: Nature and consequences. Earth-Science Reviews. 56(1–4), 179–204. DOI: https://doi.org/10.1016/S0012-8252(01)00067-8 [80] Bou Karam, D., Flamant, C., Knippertz, P., et al., 2008. Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity region: A representative case‐study. Quarterly Journal of the Royal Meteorological Society. 134(632), 621–634. DOI: https://doi.org/10.1002/qj.244 [81] Knippertz, P., Todd, M.C., 2010. The central west Saharan dust hot spot and its relation to African easterly waves and extratropical disturbances. Journal of Geophysical Research: Atmospheres. 115(D12). DOI: https://doi.org/10.1029/2009JD012819 [82] Tegen, I., Schepanski, K., Heinold, B., 2013. Comparing two years of Saharan dust source activation obtained by regional modelling and satellite observations. Atmospheric Chemistry and Physics. 13(5), 2381–2390. DOI: https://doi.org/10.5194/acp-13-2381-2013 [83] Chiapello, I., Bergametti, G., Gomes, L., et al., 1995. An additional low layer transport of Sahelian and Saharan dust over the north‐eastern tropical Atlantic. Geophysical Research Letters. 22(23), 3191–3194. DOI: https://doi.org/10.1029/95GL03313 [84] Liu, D., Wang, Y., Wang, Z., et al., 2012. The three-dimensional structure of transatlantic African dust transport: A new perspective from CALIPSO LIDAR measurements. Advances in Meteorology. 850704. DOI: https://doi.org/10.1155/2012/850704 [85] Friese, C.A., van der Does, M., Merkel, U., et al., 2016. Environmental factors controlling the seasonal variability in particle size distribution of modern Saharan dust deposited off Cape Blanc. Aeolian Research. 22, 165–179. DOI: https://doi.org/10.1016/j.aeolia.2016.04.005 [86] Schepanski, K., Tegen, I., Laurent, B., et al., 2007. A new Saharan dust source activation frequency map derived from MSG‐SEVIRI IR‐channels. Geophysical Research Letters. 34(18). DOI: https://doi.org/10.1029/2007GL030168 [87] Lavaysse, C., Flamant, C., Janicot, S., et al., 2009. Seasonal evolution of the West African heat low: A climatological perspective. Climate Dynamics. 33, 313–330. DOI: https://doi.org/10.1007/s00382-009-0553-4 [88] Messager, C., Parker, D.J., Reitebuch, O., et al., 2010. Structure and dynamics of the Saharan atmospheric boundary layer during the West African monsoon onset: Observations and analyses from the research flights of 14 and 17 July 2006. Quarterly Journal of the Royal Meteorological Society. 136(S1), 107–124. DOI: https://doi.org/10.1002/qj.469