Compressive Biomechanics of the Reptilian Intervertebral Joint
Source: By:Kadi FAUBLE, James ADAMS, Maura GERDES, Caroline VANSICKLE, Bruce A. YOUNG
DOI: https://doi.org/10.30564/jzr.v2i4.2259
Abstract:[1] Parrish JM. The Origin of Crocodilian Locomotion. Paleobiology, 1987, 13: 396-414. [2] Bell G, Polcyn M. Dallasaurus Turneri, a New Primitive Mosasauroid from the Middle Turonian of Texas and Comments on the Phylogeny of Mosasauridae (Squamata). Neth J Geosci, 2005, 84: 177-194. [3] Caldwell MW. From Fins to Limbs to Fins: Limb Evolution in Fossil Marine Reptiles. Amer J Med Genet. 2002, 112: 236-249. [4] Motani R. The Evolution of Marine Reptiles. Evol Educ Out, 2009, 2: 224-235. [5] Molnar J, Pierce S, Hutchinson J. An Experimental and Morphometric Test of the Relationship between Vertebral Morphology and Joint Stiffness in Nile Crocodiles (Crocodylus Niloticus). J Exp Biol, 2014, 217: 758-768. [6] Molnar J, Pierce S, Bhullar B-A, Turner A, Hutchinson J. Morphological and Functional Changes in the Vertebral Column with Increasing Aquatic Adaptation in Crocodylomorphs. Roy Soc Open Sci, 2015, 2: 150439. [7] Frey E. The Carrying System of Crocodilians - a Biomechanical and Phylogenetic Analysis. Stuttgart Beit Naturkund Biol, 1988, 426: 1-60. [8] Hoffstetter R, Gasc J-P. Vertebrae and Ribs of Modern Reptiles. In - Biology of the Reptilia, Vol. 1, pp. 201-310. 1969, Academic Press, New York. [9] Haines RW. The Development of Joints. J Anat, 1947, 81: 33-55. [10] Werner YL. The Ontogenic Development of the Vertebrae in Some Gekkonoid Lizards. J Morphol, 1971, 133: 41-91. [11] Taylor M, Wadel M. The Effect of Intervertebral Cartilage on Neutral Posture and Range of Motion in the Necks of Sauropod Dinosaurs. PLoS One, 2013. DOI: 10.1371/journal.pone.0078214 [12] Morinaga G, Bergmann PJ. Angles and Waves: Intervertebral Joint Angles and Axial Kinematics of Limbed Lizards, Limbless Lizards, and Snakes. Zoology, 2019, 134: 16-26. [13] Persons WS, Currie PJ. The Functional Origin of Dinosaur Bipedalism: Cumulative Evidence from Bipedally Inclined Reptiles and Disinclined Mammals. J Theor Biol, 2017, 420: 1-7. [14] Gauthier JA, Nesbitt SJ, Schachner ER, Bever GS, Joyce WG. The Bipedal Stem Crocodilian Poposaurus Gracilis: Inferring Function in Fossils and Innovation in Archosaur Locomotion. Bull Peabody Mus Nat Hist, 2011, 52: 107-126. [15] Snyder RC. Adaptations For Bipedal Locomotion Of Lizards. Amer Zool, 1962, 2: 191-203. [16] Schuett GW, Reiserer RS, Earley RL. The Evolution of Bipedal Postures in Varanoid Lizards. Biol J Linnean Soc, 2009, 97: 652-663. [17] Currey J. Comparative Mechanical Properties and Histology of Bone. Amer Zool, 1984, 24: 5-12. [18] Nicholson P, Cheng X, Lowet G, Boonen S, Davie M, et al., Structural and Material Mechanical Properties of Human Vertebral Cancellous Bone. Med Engin Physics, 1997, 19: 729-737. [19] Blob RW, Snelgrove JM. Antler Stiffness in Moose (Alces alces): Correlated Evolution of Bone Function and Material Properties? J Morph, 2006, 267: 1075-1086. [20] Leone A, Guglielmi G, Cassar-Pullicino VN, Bonomo L. Lumbar Intervertebral Instability: A Review. Radiology, 2007, 245: 62-77. [21] Howarth SJ, Callaghan JP. Compressive Force Magnitude and Intervertebral Joint Flexion/Extension Angle Influence Shear Failure Force Magnitude in the Porcine Cervical Spine. J Biomech, 2012, 45: 484-490. [22] Moon BR. Testing an Inference of Function from Structure: Snake Vertebrae Do the Twist. J Morph, 1999, 241: 217-225. [23] Crock H. Normal and Pathological Anatomy of the Lumbar Spinal Nerve Root Canals. J Bone Joint Surg, 1981, 63B: 487-490. [24] Jenis LG, An HS. Lumbar Foraminal Stenosis. Spine, 2000, 25: 389-394. [25] Jensen K, Mosekilde L, Mosekilde L. A Model of Vertebral Trabecular Bone Architecture and Its Mechanical Properties. Bone, 1990, 11: 417-423. [26] Goel VK, Ramirez SA, Kong W, Gilbertson LG. Cancellous Bone Young’s Modulus Variation Within the Vertebral Body of a Ligamentous Lumbar Spine-Application of Bone Adaptive Remodeling Concepts. J Biomech Engin, 1995, 117: 266-271. [27] Haj-Ali R, Massarwa E, Aboudi J, Galbusera F, Wolfram U, et al., A New Multiscale Micromechanical Model of Vertebral Trabecular Bones. Biomech Model Mechanobiol, 2016, 16: 933-946. [28] Hoffman B, Martin M, Brown BN, Bonassar LJ, Cheetham J. Biomechanical and Biochemical Characterization of Porcine Tracheal Cartilage. Laryngoscope, 2016, 126: E325-E331. [29] Bae WC, Ruangchaijatuporn T, Chang EY, Biswas R, Du J, et al., Morphology of Triangular Fibrocartilage Complex: Correlation with Quantitative MR and Biomechanical Properties. Skel Radiol, 2015, 45: 447-454. [30] Koike T, Wada H. Modeling of the Human Middle Ear Using Finite-Element Method. J Acoust Soc Amer, 2002, 111: DOI: 10.1121/1.1451073 [31] Barfuss D, Dantzler W. Glucose Transport in Isolated Perfused Proximal Tubules of Snake Kidney. Amer J Physiol, 1976, 231: 1716-1728. [32] Han D, Young BA. The rhinoceros among serpents: Comparative anatomy and experimental biophysics of Calabar burrowing python (Calabaria reinhardtii) skin. J Morph, 2017, 279: 86-96. [33] Luna, LG. Manual of Histological Staining Methods of the Armed Forces Institute of Pathology. 1968, McGraw-Hill, New York. [34] Rho JY, Ashman RB, Turner CH. Young’s Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements. J Biomech, 1998, 26: 111-119. [35] Cortes DH, Jacobs NT, Delucca JF, Elliott DM. Elastic, Permeability and Swelling Properties of Human Intervertebral Disc Tissues: A Benchmark for Tissue Engineering. J Biomech, 2014, 47: 2088-2094. [36] Zhang X, Gan RZ. Experimental Measurement and Modeling Analysis on Mechanical Properties of Incudostapedial Joint. Biomech Model Mechanobiol, 2010, 10: 713-726. [37] Hashizume H, Akagi T, Watanabe H, Inoue H, Ogura T. Stress Analysis of PIP Joints Using the Three-Dimensional Finite Element Method. In - Advances in the Biomechanics of the Hand and Wrist. pp 237-244. 1994, Springer, New York. [38] Fowler N, Nicol A. Interphalangeal Joint and Tendon Forces: Normal Model and Biomechanical Consequences of Surgical Reconstruction. J Biomech, 2000, 33: 1055-1062. [39] Doube M, Klosowski MM, Wiktorowicz-Conroy AM, Hutchinson JR, Shefelbine SJ. Trabecular bone scales allometrically in mammals and birds. Proc Royal Soc B, 2011, 278: 3067-3073. [40] Salisbury S, Frey E. A biomechanical transformation model for the evolution of semi-spheroidal articulations between adjoining vertebral bodies in crocodilians. In - Crocodilian Biology and Evolution. pp. 85-134. 2000, Surrey Beatty & Sons: Chipping Norton, UK. [41] IiJima M, Kubo T. Comparative morphology of presacral vertebrae in extant crocodylians: taxonomic, functional and ecological implications. Zool J Linnean Soc, 2019, 186: 1006-1025. [42] Fronimos JA, Wilson JA. Concavo-convex intercentral joints stabilize the vertebral column in sauropod dinosaurs and crocodylians. Ameghiniana, 2017, 54: 151-176. [43] Sunderland S. Meningeal-Neural Relations in the Intervertebral Foramen. J Neurosurg, 1974, 40: 756-763. [44] Stephens M, Evans JH, Oʼbrien JP. Lumbar Intervertebral Foramens. Spine, 1991, 16: 525-529. [45] Wiltse LL, Fonseca AS, Amster J, Dimartino P, Ravessoud FA. Relationship of the Dura, Hofmannʼs Ligaments, Batsonʼs Plexus, and a Fibrovascular Membrane Lying on the Posterior Surface of the Vertebral Bodies and Attaching to the Deep Layer of the Posterior Longitudinal Ligament. Spine, 1998, 18: 1030-1043. [46] Jagla G, Walocha J, Rajda K, Dobrogowski J, Wordliczek J. Anatomical Aspects of Epidural and Spinal Analgesia. Adv Pall Med, 2009, 8: 135-146.